ﻻ يوجد ملخص باللغة العربية
This paper develops the theory of Dirac reduction by symmetry for nonholonomic systems on Lie groups with broken symmetry. The reduction is carried out for the Dirac structures, as well as for the associated Lagrange-Dirac and Hamilton-Dirac dynamical systems. This reduction procedure is accompanied by reduction of the associated variational structures on both Lagrangian and Hamiltonian sides. The reduced dynamical systems obtained are called the implicit Euler-Poincare-Suslov equations with advected parameters and the implicit Lie-Poisson-Suslov equations with advected parameters. The theory is illustrated with the help of finite and infinite dimensional examples. It is shown that equations of motion for second order Rivlin-Ericksen fluids can be formulated as an infinite dimensional nonholonomic system in the framework of the present paper.
This is the first of two companion papers. The joint aim is to study a generalization to higher dimension of the point vortex systems familiar in 2-D. In this paper we classify the momentum polytopes for the action of the Lie group SU(3) on products
There is a well developed and useful theory of Hamiltonian reduction for semidirect products, which applies to examples such as the heavy top, compressible fluids and MHD, which are governed by Lie-Poisson type equations. In this paper we study the L
We derive an optimal control formulation for a nonholonomic mechanical system using the nonholonomic constraint itself as the control. We focus on Suslovs problem, which is defined as the motion of a rigid body with a vanishing projection of the body
We develop a theory of semidirect products of partial groups and localities. Our concepts generalize the notions of direct products of partial groups and localities, and of semidirect products of groups.
In this paper, we make a generalization of Rouths reduction method for Lagrangian systems with symmetry to the case where not any regularity condition is imposed on the Lagrangian. First, we show how implicit Lagrange-Routh equations can be obtained