ترغب بنشر مسار تعليمي؟ اضغط هنا

The game chromatic number of trees and forests

160   0   0.0 ( 0 )
 نشر من قبل Victor Larsen
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

While the game chromatic number of a forest is known to be at most 4, no simple criteria are known for determining the game chromatic number of a forest. We first state necessary and sufficient conditions for forests with game chromatic number 2 and then investigate the differences between forests with game chromatic number 3 and 4. In doing so, we present a minimal example of a forest with game chromatic number 4, criteria for determining the game chromatic number of a forest without vertices of degree 3, and an example of a forest with maximum degree 3 and game chromatic number 4.



قيم البحث

اقرأ أيضاً

118 - Shrisha Rao , Babita Grover 2008
A new 2-parameter family of central structures in trees, called central forests, is introduced. Miniekas $m$-center problem and McMorriss and Reids central-$k$-tree can be seen as special cases of central forests in trees. A central forest is defined as a forest $F$ of $m$ subtrees of a tree $T$, where each subtree has $k$ nodes, which minimizes the maximum distance between nodes not in $F$ and those in $F$. An $O(n(m+k))$ algorithm to construct such a central forest in trees is presented, where $n$ is the number of nodes in the tree. The algorithm either returns with a central forest, or with the largest $k$ for which a central forest of $m$ subtrees is possible. Some of the elementary properties of central forests are also studied.
144 - Mikhail Isaev , Mihyun Kang 2021
We determine the asymptotic behaviour of the chromatic number of exchangeable random graphs defined by step-regulated graphons. Furthermore, we show that the upper bound holds for a general graphon. We also extend these results to sparse random graphs obtained by percolations on graphons.
Resolving a problem raised by Norin, we show that for each $k in mathbb{N}$, there exists an $f(k) le 7k$ such that every graph $G$ with chromatic number at least $f(k)+1$ contains a subgraph $H$ with both connectivity and chromatic number at least $ k$. This result is best-possible up to multiplicative constants, and sharpens earlier results of Alon-Kleitman-Thomassen-Saks-Seymour from 1987 showing that $f(k) = O(k^3)$, and of Chudnovsky-Penev-Scott-Trotignon from 2013 showing that $f(k) = O(k^2)$. Our methods are robust enough to handle list colouring as well: we also show that for each $k in mathbb{N}$, there exists an $f_ell(k) le 4k$ such that every graph $G$ with list chromatic number at least $f_ell(k)+1$ contains a subgraph $H$ with both connectivity and list chromatic number at least $k$. This result is again best-possible up to multiplicative constants; here, unlike with $f(cdot)$, even the existence of $f_ell(cdot)$ appears to have been previously unknown.
Let Q(n,c) denote the minimum clique size an n-vertex graph can have if its chromatic number is c. Using Ramsey graphs we give an exact, albeit implicit, formula for the case c is at least (n+3)/2.
By a finite type-graph we mean a graph whose set of vertices is the set of all $k$-subsets of $[n]={1,2,ldots, n}$ for some integers $nge kge 1$, and in which two such sets are adjacent if and only if they realise a certain order type specified in ad vance. Examples of such graphs have been investigated in a great variety of contexts in the literature with particular attention being paid to their chromatic number. In recent joint work with Tomasz {L}uczak, two of the authors embarked on a systematic study of the chromatic numbers of such type-graphs, formulated a general conjecture determining this number up to a multiplicative factor, and proved various results of this kind. In this article we fully prove this conjecture.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا