ترغب بنشر مسار تعليمي؟ اضغط هنا

Monte Carlo Study of Patchy Nanostructures Self-Assembled from a Single Multiblock Chain

93   0   0.0 ( 0 )
 نشر من قبل Jakub Krajniak
 تاريخ النشر 2014
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a lattice Monte Carlo simulation for a multiblock copolymer chain of length N=240 and microarchitecture $(10-10)_{12}$.The simulation was performed using the Monte Carlo method with the Metropolis algorithm. We measured average energy, heat capacity, the mean squared radius of gyration, and the histogram of cluster count distribution. Those quantities were investigated as a function of temperature and incompatibility between segments, quantified by parameter {omega}. We determined the temperature of the coil-globule transition and constructed the phase diagram exhibiting a variety of patchy nanostructures. The presented results yield a qualitative agreement with those of the off-lattice Monte Carlo method reported earlier, with a significant exception for small incompatibilities,{omega}, and low temperatures, where 3-cluster patchy nanostructures are observed in contrast to the 2-cluster structures observed for the off-lattice $(10-10)_{12}$ chain. We attribute this difference to a considerable stiffness of lattice chains in comparison to that of the off-lattice chains.



قيم البحث

اقرأ أيضاً

Multiblock copolymer chains in implicit nonselective solvents are studied by Monte Carlo method which employs a parallel tempering algorithm. Chains consisting of 120 $A$ and 120 $B$ monomers, arranged in three distinct microarchitectures: $(10-10)_{ 12}$, $(6-6)_{20}$, and $(3-3)_{40}$, collapse to globular states upon cooling, as expected. By varying both the reduced temperature $T^*$ and compatibility between monomers $omega$, numerous intra-globular structures are obtained: diclusters (handshake, spiral, torus with a core, etc.), triclusters, and $n$-clusters with $n>3$ (lamellar and other), which are reminiscent of the block copolymer nanophases for spherically confined geometries. Phase diagrams for various chains in the $(T^*, omega)$-space are mapped. The structure factor $S(k)$, for a selected microarchitecture and $omega$, is calculated. Since $S(k)$ can be measured in scattering experiments, it can be used to relate simulation results to an experiment. Self-assembly in those systems is interpreted in term of competition between minimization of the interfacial area separating different types of monomers and minimization of contacts between chain and solvent. Finally, the relevance of this model to the protein folding is addressed.
163 - Werner Krauth 2021
This review treats the mathematical and algorithmic foundations of non-reversible Markov chains in the context of event-chain Monte Carlo (ECMC), a continuous-time lifted Markov chain that employs the factorized Metropolis algorithm. It analyzes a nu mber of model applications, and then reviews the formulation as well as the performance of ECMC in key models in statistical physics. Finally, the review reports on an ongoing initiative to apply the method to the sampling problem in molecular simulation, that is, to real-world models of peptides, proteins, and polymers in aqueous solution.
377 - Raja Paul , Heiko Rieger 2004
The non-equilibrium dynamics of condensation phenomena in nano-pores is studied via Monte Carlo simulation of a lattice gas model. Hysteretic behavior of the particle density as a function of the density of a reservoir is obtained for various pore ge ometries in two and three dimensions. The shape of the hysteresis loops depend on the characteristics of the pore geometry. The evaporation of particles from a pore can be fitted to a stretched exponential decay of the particle density $rho_f(t) sim exp [ -(t/tau)^beta]$. Phase separation dynamics inside the pore is effectively described by a random walk of the non-wetting phases. Domain evolution is significantly slowed down in presence of random wall-particle potential and gives rise to a temperature dependent growth exponent. On the other hand roughness of the pore wall only delays the onset of a pure domain growth.
Colloidal crystals exhibit structural color without any color pigment due to the crystals periodic nanostructure, which can interfere with visible light. This crystal structure is iridescent as the resulting color changes with the viewing or illumina tion angle, which limits its use for printing or displays. To eliminate the iridescent property, it is important to make the packing of the colloidal nanoparticles disordered. Here, we introduce a drop-casting method where a droplet of a water- ethanol mixture containing monodisperse polymer-coated silica nanoparticles creates a relatively uniform and non-iridescent deposit after the droplet evaporates completely on a heated substrate. The uniformity is caused by a thermal Marangoni flow and fast evaporation effects due to the heated substrate, whereas non-iridescence is the outcome of short-range-ordered packing of nanoparticles by depletion attraction and friction effects produced by polymer brushes. We show that the colors of the final deposits from individual droplets remain unchanged while the viewing angle is varied under ambient light. We expect that the coating method is compatible with ink-jet printing and the uniformly coated self-assembled non-iridescent nanostructures have potential for color displays using reflection mode and other optical devices.
A Monte Carlo study for single baryon reconstruction method is presented based on two-body baryonic decays of charmonium, $jJ/psi$, $psi(3686)rightarrowXibarXi$ at BESIII experiment. As a result, we find that the detection efficiency for single baryo n reconstruction method can be increased by a factor of $sim$4 relative to the traditional full-reconstruction method. It indicates that single baryon reconstruction method could be used in the other two-body baryonic decays of charmonium, such as $J/psi$, $psi(3686)rightarrowXi(1530)barXi(1530)$, $Xi(1530)barXi$, whose expected yields are estimated based on single baryon reconstruction method. The expected uncertainties for the measurements of the angular distribution parameters are also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا