ﻻ يوجد ملخص باللغة العربية
The Hodgkin-Huxley (HH) model is a powerful model to explain different aspects of spike generation in excitable cells. However, the HH model was proposed in 1952 when the real structure of the ion channel was unknown. It is now common knowledge that in many ion-channel proteins the flow of ions through the pore is governed by a gate, comprising a so-called selectivity filter inside the ion channel, which can be controlled by electrical interactions. The selectivity filter is believed to be responsible for the selection and fast conduction of particular ions across the membrane of an excitable cell. Other (generally larger) parts of the molecule such as the pore-domain gate control the access of ions to the channel protein. In fact, two types of gates are considered here for ion channels: the external gate, which is the voltage sensitive gate, and the internal gate which is the selectivity filter gate (SFG). Some quantum effects are to expected in the SFG due to its small dimensions, which may play an important role in the operation of an ion channel. Here, we examine parameters in a generalized model of HH to see whether any parameter affects the spike generation. Our results indicate that the previously suggested semi-quantum-classical equation proposed by Bernroider and Summhammer (BS) agrees strongly with the HH equation under different conditions and may even provide a better explanation in some cases. We conclude that the BS model can refine the classical HH model substantially.
The random transitions of ion channels between conducting and non-conducting states generate a source of internal fluctuations in a neuron, known as channel noise. The standard method for modeling fluctuations in the states of ion channels uses conti
One of the most celebrated successes in computational biology is the Hodgkin-Huxley framework for modeling electrically active cells. This framework, expressed through a set of differential equations, synthesizes the impact of ionic currents on a cel
The first realization of a biomolecular OR gate function with double-sigmoid response (sigmoid in both inputs) is reported. Two chemical inputs activate the enzymatic gate processes resulting in the output signal: chromogen oxidation, which occurs wh
Key to realising quantum computers is minimising the resources required to build logic gates into useful processing circuits. While the salient features of a quantum computer have been shown in proof-of-principle experiments, difficulties in scaling
Magnetic skyrmions can be driven by an applied spin-polarized electron current which exerts a spin-transfer torque on the localized spins constituting the skyrmion. However, the longitudinal dynamics is plagued by the skyrmion Hall effect which cause