ﻻ يوجد ملخص باللغة العربية
The Advanced LIGO and Advanced Virgo gravitational wave (GW) detectors will begin operation in the coming years, with compact binary coalescence events a likely source for the first detections. The gravitational waveforms emitted directly encode information about the sources, including the masses and spins of the compact objects. Recovering the physical parameters of the sources from the GW observations is a key analysis task. This work describes the LALInference software library for Bayesian parameter estimation of compact binary signals, which builds on several previous methods to provide a well-tested toolkit which has already been used for several studies. We show that our implementation is able to correctly recover the parameters of compact binary signals from simulated data from the advanced GW detectors. We demonstrate this with a detailed comparison on three compact binary systems: a binary neutron star, a neutron star black hole binary and a binary black hole, where we show a cross-comparison of results obtained using three independent sampling algorithms. These systems were analysed with non-spinning, aligned spin and generic spin configurations respectively, showing that consistent results can be obtained even with the full 15-dimensional parameter space of the generic spin configurations. We also demonstrate statistically that the Bayesian credible intervals we recover correspond to frequentist confidence intervals under correct prior assumptions by analysing a set of 100 signals drawn from the prior. We discuss the computational cost of these algorithms, and describe the general and problem-specific sampling techniques we have used to improve the efficiency of sampling the compact binary coalescence parameter space.
We propose a novel method to test the consistency of the multipole moments of compact binary systems with the predictions of General Relativity (GR). The multipole moments of a compact binary system, known in terms of symmetric and trace-free tensors
Gravitational wave measurements will provide insight into the population of coalescing compact binaries throughout the universe. We describe and demonstrate a flexible parametric method to infer the event rate as a function of compact binary paramete
Compact binary systems with neutron stars or black holes are one of the most promising sources for ground-based gravitational wave detectors. Gravitational radiation encodes rich information about source physics; thus parameter estimation and model s
In an earlier work [S. Kastha et al., PRD {bf 98}, 124033 (2018)], we developed the {it parametrized multipolar gravitational wave phasing formula} to test general relativity, for the non-spinning compact binaries in quasi-circular orbit. In this pap
Estimating the parameters of gravitational wave signals detected by ground-based detectors requires an understanding of the properties of the detectors noise. In particular, the most commonly used likelihood function for gravitational wave data analy