ﻻ يوجد ملخص باللغة العربية
The high rate of planet detection among solar-type stars argues that planet formation is common. It is also generally assumed that planets form in protoplanetary discs like those observed in nearby star forming regions. On what timescale does the transformation from discs to planets occur? Here we show that current inventories of planets and protoplanetary discs are sensitive enough to place basic constraints on the timescale and efficiency of the planet formation process. A comparison of planet detection statistics and the measured solid reservoirs in T Tauri discs suggests that planet formation is likely already underway at the few Myr age of the discs in Taurus-Auriga, with a large fraction of solids having been converted into large objects with low millimeter opacity and/or sequestered at small disc radii where they are difficult to detect at millimeter wavelengths.
We carried out a 12CO(3-2) survey of 52 southern stars with a wide range of IR excesses (LIR/L*) using the single dish telescopes APEX and ASTE. The main aims were (1) to characterize the evolution of molecular gas in circumstellar disks using LIR/L*
We image with unprecedented spatial resolution and sensitivity disk features that could be potential signs of planet-disk interaction. Two companion candidates have been claimed in the disk around the young Herbig Ae/Be star HD100546. Thus, this obje
AB Aur is a Herbig Ae star that hosts a prototypical transition disk. The disk shows a plethora of features connected with planet formation mechanisms. Understanding the physical and chemical characteristics of these features is crucial to advancing
The first long-baseline ALMA campaign resolved the disk around the young star HL Tau into a number of axisymmetric bright and dark rings. Despite the very young age of HL Tau these structures have been interpreted as signatures for the presence of (p
Stars grow by accreting gas that has an evolving composition owing to the growth and inward drift of dust (pebble wave), the formation of planetesimals and planets, and the selective removal of hydrogen and helium by disk winds. We investigated how t