ترغب بنشر مسار تعليمي؟ اضغط هنا

Orbital symmetry of charge density wave order in La1.875Ba0.125CuO4 and YBa2Cu3O6.67

138   0   0.0 ( 0 )
 نشر من قبل David Hawthorn
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent theories of charge density wave (CDW) order in high temperature superconductors have predicted a primarily d CDW orbital symmetry. Here, we report on the orbital symmetry of CDW order in the canonical cuprate superconductors La1.875Ba0.125CuO4 (LBCO) and YBa2Cu3O6.67 (YBCO), using resonant soft x-ray scattering and a model mapped to the CDW orbital symmetry. From measurements sensitive to the O sublattice, we conclude that LBCO has predominantly s CDW orbital symmetry, in contrast to the d orbital symmetry recently reported in other cuprates. Additionally, we show for YBCO that the CDW orbital symmetry differs along the a and b crystal axes and that these both differ from LBCO. This work highlights CDW orbital symmetry as an additional key property that distinguishes the different cuprate families. We discuss how the CDW symmetry may be related to the 1/8--anomaly and to static spin ordering.



قيم البحث

اقرأ أيضاً

Charge density wave (CDW) order has been shown to compete and coexist with superconductivity in underdoped cuprates. Theoretical proposals for the CDW order include an unconventional $d$-symmetry form factor CDW, evidence for which has emerged from m easurements, including resonant soft x-ray scattering (RSXS) in YBa$_2$Cu$_3$O$_{6+x}$ (YBCO). Here, we revisit RSXS measurements of the CDW symmetry in YBCO, using a variation in the measurement geometry to provide enhanced sensitivity to orbital symmetry. We show that the $(0 0.31 L)$ CDW peak measured at the Cu $L$ edge is dominated by an $s$ form factor rather than a $d$ form factor as was reported previously. In addition, by measuring both $(0.31 0 L)$ and $(0 0.31 L)$ peaks, we identify a pronounced difference in the orbital symmetry of the CDW order along the $a$ and $b$ axes, with the CDW along the $a$ axis exhibiting orbital order in addition to charge order.
Superconductivity often emerges in the proximity of, or in competition with, symmetry breaking ground states such as antiferromagnetism or charge density waves (CDW)1-5. A number of materials in the cuprate family, which includes the high-transition- temperature (high-Tc) superconductors, show spin and charge density wave order5-7. Thus a fundamental question is to what extent these ordered states exist for compositions close to optimal for superconductivity. Here we use high-energy x-ray diffraction to show that a CDW develops at zero field in the normal state of superconducting YBa2Cu3O6.67 (Tc = 67 K). Below Tc, the application of a magnetic field suppresses superconductivity and enhances the CDW. Hence, the CDW and superconductivity are competing orders in this typical high-Tc superconductor, and high-Tc superconductivity can form from a pre-existing CDW state. Our results explain observations of small Fermi surface pockets8, negative Hall and Seebeck effect9,10 and the Tc plateau11 in this material when underdoped.
Despite being usually considered two competing phenomena, charge-density-wave and superconductivity coexist in few systems, the most emblematic one being the transition metal dichalcogenide 2H-NbSe$_2$. This unusual condition is responsible for speci fic Raman signatures across the two phase transitions in this compound. While the appearance of a soft phonon mode is a well-established fingerprint of the charge-density-wave order, the nature of the sharp sub-gap mode emerging below the superconducting temperature is still under debate. In this work we use the external pressure as a knob to unveil the delicate interplay between the two orders, and consequently the nature of the superconducting mode. Thanks to an advanced extreme-conditions Raman technique we are able to follow the pressure evolution and the simultaneous collapse of the two intertwined charge density wave and superconducting modes. The comparison with microscopic calculations in a model system supports the Higgs-type nature of the superconducting mode and suggests that charge-density-wave and superconductivity in 2H-NbSe$_2$ involve mutual electronic degrees of freedom. These findings fill knowledge gap on the electronic mechanisms at play in transition metal dichalcogenides, a crucial step to fully exploit their properties in few-layers systems optimized for devices applications.
87 - V. Thampy , X. M. Chen , Y. Cao 2017
Charge density wave (CDW) correlations feature prominently in the phase diagram of the cuprates, motivating competing theories of whether fluctuating CDW correlations aid superconductivity or whether static CDW order coexists with superconductivity i n inhomogeneous or spatially modulated states. Here we report Cu $L$-edge resonant x-ray photon correlation spectroscopy (XPCS) measurements of CDW correlations in superconducting La$_{2-x}$Ba$_x$CuO$_4$ $x=0.11$. Static CDW order is shown to exist in the superconducting state at low temperatures and to persist up to at least 85% of the CDW transition temperature. We discuss the implications of our observations for how emph{nominally} competing order parameters can coexist in the cuprates.
237 - S. Gerber , H. Jang , H. Nojiri 2015
Charge density wave (CDW) correlations have recently been shown to universally exist in cuprate superconductors. However, their nature at high fields inferred from nuclear magnetic resonance is distinct from that measured by x-ray scattering at zero and low fields. Here we combine a pulsed magnet with an x-ray free electron laser to characterize the CDW in YBa2Cu3O6.67 via x-ray scattering in fields up to 28 Tesla. While the zero-field CDW order, which develops below T ~ 150 K, is essentially two-dimensional, at lower temperature and beyond 15 Tesla, another three-dimensionally ordered CDW emerges. The field-induced CDW onsets around the zero-field superconducting transition temperature, yet the incommensurate in-plane ordering vector is field-independent. This implies that the two forms of CDW and high-temperature superconductivity are intimately linked.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا