ترغب بنشر مسار تعليمي؟ اضغط هنا

Planck intermediate results. XXXII. The relative orientation between the magnetic field and structures traced by interstellar dust

108   0   0.0 ( 0 )
 نشر من قبل Andrea Bracco
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The role of the magnetic field in the formation of the filamentary structures observed in the interstellar medium (ISM) is a debated topic. The Planck all-sky maps of linearly polarized emission from dust at 353GHz provide the required combination of imaging and statistics to study the correlation between the structures of the Galactic magnetic field and of interstellar matter, both in the diffuse ISM and in molecular clouds. The data reveal structures, or ridges, in the intensity map with counterparts in the Stokes Q and/or U maps. We focus on structures at intermediate and high Galactic latitudes with column density from $10^{20}$ to $10^{22}$ cm$^{-2}$. We measure the magnetic field orientation on the plane of the sky from the polarization data, and present an algorithm to estimate the orientation of the ridges from the dust intensity map. We use analytical models to account for projection effects. Comparing polarization angles on and off the structures, we estimate the mean ratio between the strengths of the turbulent and mean components of the magnetic field to be between 0.6 and 1.0, with a preferred value of 0.8. We find that the ridges are preferentially aligned with the magnetic field measured on the structures. This trend becomes more striking for increasing polarization fraction and decreasing column density. We interpret the increase of alignment with polarization fraction as a consequence of projections effects. The decrease of alignment for high column density is not due to a loss of correlation between the structures and the geometry of the magnetic field. In molecular complexes, we observe structures perpendicular to the magnetic field, which cannot be accounted for by projection effects. We discuss our results in the context of models and MHD simulations, which describe the formation of structures in the magnetized ISM.



قيم البحث

اقرأ أيضاً

Planck observations at 353GHz provide the first fully-sampled maps of the polarized dust emission towards interstellar filaments and their backgrounds. The polarization data provide insight on the structure of their magnetic field (B). We present the polarization maps of three nearby star forming filament of moderate column density (NH~10^22cm^-2): Musca, B211, and L1506. We use the spatial information to separate Stokes I, Q, and U of the filaments from those of their backgrounds, an essential step to measure the intrinsic polarization fraction (p) and angle (psi) of each emission component. We find that the polarization angles in the three filaments (psi_fil) are coherent along their lengths and not the same as in their backgrounds (psi_bg). The differences between psi_fil and psi_bg are 12deg, 6deg, and 54deg for Musca, B211, and L1506, respectively. These differences for Musca and L1506 are larger than the dispersions of psi, both along the filaments and in their backgrounds. The observed changes of psi are direct evidence for variations of the orientation of the plane of the sky (POS) projection of the B-field. As in previous studies, we find a decrease of several percent of p with NH. We show that the drop in p cannot be explained by random fluctuations of the orientation of B within the filaments because they are too small (sigma_psi<10deg). We recognize the degeneracy between dust alignment efficiency and the structure of B in causing variations in p, but we argue that the decrease of p from the backgrounds to the filaments results in part from depolarization associated with the 3D structure of B: both its orientation in the POS and with respect to the POS. We do not resolve the inner structure of the filaments, but at the smallest scales accessible with Planck (~0.2pc), the observed changes of psi and p hold information on the B-field structure within filaments.
Shortened abstract: Observations of the nearby Chamaeleon clouds in gamma rays with the Fermi Large Area Telescope and in thermal dust emission with Planck and IRAS have been used with the HI and CO radio data to (i) map the gas column densities in t he different phases and at the dark neutral medium (DNM) transition between the HI-bright and CO-bright media; (ii) constrain the CO-to-$H_2$ conversion factor, $X_{CO}$; (iii) probe the dust properties per gas nucleon in each gas phase and spatially across the clouds. We have separated clouds in velocity in HI and CO emission and modelled the 0.4-100 GeV intensity, the dust optical depth at 353 GHz, the thermal radiance of the large grains, and an estimate of the dust extinction empirically corrected for the starlight intensity, $A_{VQ}$. The gamma-ray emissivity spectra confirm that the GeV-TeV cosmic rays uniformly permeate all gas phases up to the CO cores. The dust and cosmic rays reveal large amounts of DNM gas, with comparable spatial distributions and twice as much mass as in the CO-bright clouds. We give constraints on the HI-DNM-CO transitions and CO-dark $H_2$ fractions for separate clouds. The corrected extinction provides the best fit to the total gas traced by the gamma rays, but we find evidence for a rise in $A_{VQ}/N_H$ and a steep rise in opacity, with increasing $N_H$ and $H_2$ fraction, and with decreasing dust temperature. We observe less variations for the specific power of the grains, except for a decline by half in the CO cores. This combined information suggests grain evolution. The gamma rays and dust radiance yield consistent $X_{CO}$ estimates near $0.7times10^{20}$ cm$^{-2}$ (K km/s)$^{-1}$. The other dust tracers yield biased values because of the grain opacity rise in the CO clouds. These results also confirm a factor of 2 difference between $X_{CO}$ estimates at pc and kpc scales.
Planck has mapped the polarized dust emission over the whole sky, making it possible to trace the Galactic magnetic field structure that pervades the interstellar medium (ISM). We combine polarization data from Planck with rotation measure (RM) obser vations towards a massive star-forming region, the Rosette Nebula in the Monoceros molecular cloud, to study its magnetic field structure and the impact of an expanding HII region on the morphology of the field. We derive an analytical solution for the magnetic field, assumed to evolve from an initially uniform configuration following the expansion of ionized gas and the formation of a shell of swept-up ISM. From the RM data we estimate a mean value of the line-of-sight component of the magnetic field of about 3microG (towards the observer) in the Rosette Nebula, for a uniform electron density of about 12cm-3. The dust shell that surrounds the Rosette HII region is clearly observed in the Planck intensity map at 353 GHz, with a polarization signal significantly different from that of the local background when considered as a whole. The Planck observations constrain the plane-of-the-sky orientation of the magnetic field in the Rosettes parent molecular cloud to be mostly aligned with the large-scale field along the Galactic plane. The Planck data are compared with the analytical model, which predicts the mean polarization properties of a spherical and uniform dust shell for a given orientation of the field. This comparison leads to an upper limit of about 45degr on the angle between the line of sight and the magnetic field in the Rosette complex, for an assumed intrinsic dust polarization fraction of 4%. This field direction can reproduce the RM values detected in the ionized region if the magnetic field strength in the Monoceros molecular cloud is in the range 6.5--9microG.
We study the statistical properties of interstellar dust polarization at high Galactic latitude, using the Stokes parameter Planck maps at 353 GHz. Our aim is to advance the understanding of the magnetized interstellar medium (ISM), and to provide a model of the polarized dust foreground for cosmic microwave background component-separation procedures. Focusing on the southern Galactic cap, we examine the statistical distributions of the polarization fraction ($p$) and angle ($psi$) to characterize the ordered and turbulent components of the Galactic magnetic field (GMF) in the solar neighbourhood. We relate patterns at large angular scales in polarization to the orientation of the mean (ordered) GMF towards Galactic coordinates $(l_0,b_0)=(70^circ pm 5^circ,24^circ pm 5^circ)$. The histogram of $p$ shows a wide dispersion up to 25 %. The histogram of $psi$ has a standard deviation of $12^circ$ about the regular pattern expected from the ordered GMF. We use these histograms to build a phenomenological model of the turbulent component of the GMF, assuming a uniform effective polarization fraction ($p_0$) of dust emission. To model the Stokes parameters, we approximate the integration along the line of sight (LOS) as a sum over a set of $N$ independent polarization layers, in each of which the turbulent component of the GMF is obtained from Gaussian realizations of a power-law power spectrum. We are able to reproduce the observed $p$ and $psi$ distributions using: a $p_0$ value of (26 $pm$ 3)%; a ratio of 0.9 $pm$ 0.1 between the strengths of the turbulent and mean components of the GMF; and a small value of $N$. We relate the polarization layers to the density structure and to the correlation length of the GMF along the LOS.
The Andromeda Galaxy (M31) is one of a few galaxies that has sufficient angular size on the sky to be resolved by the Planck satellite. Planck has detected M31 in all of its frequency bands, and has mapped out the dust emission with the High Frequenc y Instrument, clearly resolving multiple spiral arms and sub-features. We examine the morphology of this long-wavelength dust emission as seen by Planck, including a study of its outermost spiral arms, and investigate the dust heating mechanism across M31. We find that dust dominating the longer wavelength emission ($gtrsim 0.3,$mm) is heated by the diffuse stellar population (as traced by 3.6$,mu$m emission), with the dust dominating the shorter wavelength emission heated by a mix of the old stellar population and star-forming regions (as traced by 24$,mu$m emission). We also fit spectral energy distributions (SEDs) for individual 5 pixels and quantify the dust properties across the galaxy, taking into account these different heating mechanisms, finding that there is a linear decrease in temperature with galactocentric distance for dust heated by the old stellar population, as would be expected, with temperatures ranging from around 22$,$K in the nucleus to 14$,$K outside of the 10$,$kpc ring. Finally, we measure the integrated spectrum of the whole galaxy, which we find to be well-fitted with a global dust temperature of ($18.2pm1.0$)$,$K with a spectral index of $1.62pm0.11$ (assuming a single modified blackbody), and a significant amount of free-free emission at intermediate frequencies of 20-60$,$GHz, which corresponds to a star formation rate of around $0.12$M$_odot,$yr$^{-1}$. We find a $2.3,sigma$ detection of the presence of spinning dust emission, with a 30$,$GHz amplitude of $0.7pm0.3,$Jy, which is in line with expectations from our Galaxy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا