ﻻ يوجد ملخص باللغة العربية
We describe an elementary convex geometric algorithm for realizing Schubert cycles in complete flag varieties by unions of faces of polytopes. For GL_n and Gelfand--Zetlin polytopes, combinatorics of this algorithm coincides with that of the mitosis on pipe dreams introduced by Knutson and Miller. For Sp_4 and a Newton--Okounkov polytope of the symplectic flag variety, the algorithm yields a new combinatorial rule that extends to Sp_{2n}.
We study automorphic categories of nilpotent sheaves under degenerations of smooth curves to nodal Deligne-Mumford curves. Our constructions realize affine Hecke operators as the result of bubbling projective lines from marked points. We use this to
We introduce the notion of flag Bott-Samelson variety as a generalization of Bott-Samelson variety and flag variety. Using a birational morphism from an appropriate Bott-Samelson variety to a flag Bott-Samelson variety, we compute Newton-Okounkov bod
Given an orientable weakly self-dual manifold X of rank two, we build a geometric realization of the Lie algebra sl(6,C) as a naturally defined algebra L of endomorphisms of the space of differential forms of X. We provide an explicit description of
In this paper, we explicitly prove that statistical manifolds, related to exponential families and with flat structure connection have a Frobenius manifold structure. This latter object, at the interplay of beautiful interactions between topology and
We provide a transformation formula of non-commutative Donaldson-Thomas invariants under a composition of mutations. Consequently, we get a description of a composition of cluster transformations in terms of quiver Grassmannians. As an application, w