ﻻ يوجد ملخص باللغة العربية
GRB 090618 is a bright GRB with multiple pulses. It shows evidence of thermal emission in the initial pulses as well as in the early afterglow phase. As high resolution spectral data of emph{Swift}/XRT is available for the early afterglow, we investigate the shape and evolution of the thermal component in this phase using data from the emph{Swift}/BAT, the emph{Swift}/XRT, and the emph{Fermi}/GBM detectors. An independent fit to the BAT and XRT data reveals two correlated blackbodies with monotonically decreasing temperatures. Hence we investigated the combined data with a model consisting of two blackbodies and a power-law (2BBPL), a model suggested for several bright GRBs. We elicit the following interesting features of the 2BBPL model: a) the same model is applicable from the peak of the last pulse in the prompt emission to the afterglow emission, b) the ratio of temperatures and the fluxes of the two black bodies remains constant throughout the observations, c) the black body temperatures and fluxes show a monotonic decrease with time, with the BB fluxes dropping about a factor of two faster than that of the power-law emission, d) attributing the blackbody emission to photospheric emissions, we find that the photospheric radii increase very slowly with time, and the lower temperature blackbody shows a larger emitting radius than that of the higher temperature black body. We find some evidence that the underlying shape of the non-thermal emission is a cut-off power-law rather than a power-law. We sketch a spine-sheath jet model to explain our observations.
We report the results of our observing campaign on GRB140903A, a nearby (z=0.351) short duration (T90~0.3 s) gamma-ray burst discovered by Swift. We monitored the X-ray afterglow with Chandra up to 21 days after the burst, and detected a steeper deca
We present Space-VLBI RadioAstron observations at 1.6 GHz and 4.8 GHz of the flat spectrum radio quasar 3C 273, with detections on baselines up to 4.5 and 3.3 Earth Diameters, respectively. Achieving the best angular resolution at 1.6 GHz to date, we
We have developed a quasi-analytical model for the production of radiation in strong-line blazars, assuming a spine-sheath jet structure. The model allows us to study how the spine and sheath spectral components depend on parameters describing the ge
The afterglow of GRB 170817A has been detected for more than three years, but the origin of the multi-band afterglow light curves remains under debate. A classical top-hat jet model is faced with difficulties in producing a shallow rise of the afterg
We present multiwavelength modeling of the afterglow from the long gamma-ray burst GRB 160625B using Markov Chain Monte Carlo (MCMC) techniques of the afterglowpy Python package. GRB 160625B is an extremely bright burst with a rich set of observation