ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct path from microscopic mechanics to Debye shielding, Landau damping, and wave-particle interaction

171   0   0.0 ( 0 )
 نشر من قبل Yves Elskens
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The derivation of Debye shielding and Landau damping from the $N$-body description of plasmas is performed directly by using Newtons second law for the $N$-body system. This is done in a few steps with elementary calculations using standard tools of calculus, and no probabilistic setting. Unexpectedly, Debye shielding is encountered together with Landau damping. This approach is shown to be justified in the one-dimensional case when the number of particles in a Debye sphere becomes large. The theory is extended to accommodate a correct description of trapping and chaos due to Langmuir waves. Shielding and collisional transport are found to be two related aspects of the repulsive deflections of electrons, in such a way that each particle is shielded by all other ones while keeping in uninterrupted motion.



قيم البحث

اقرأ أيضاً

146 - D.F. Escande 2015
This paper brings further insight into the recently published N-body description of Debye shielding and Landau damping [Escande D F, Elskens Y and Doveil F 2014 Plasma Phys. Control. Fusion 57 025017]. Its fundamental equation for the electrostatic p otential is derived in a simpler and more rigorous way. Various physical consequences of the new approach are discussed, and this approach is compared with the seminal one by Pines and Bohm [Pines D and Bohm D 1952 Phys. Rev. 85 338--353].
We discuss the self-consistent dynamics of plasmas by means of hamiltonian formalism for a system of $N$ near-resonant electrons interacting with a single Langmuir wave. The connection with the Vlasov description is revisited through the numerical ca lculation of the van Kampen-like eigenfrequencies of the linearized dynamics for many degrees of freedom. Both the exponential-like growth as well as damping of the Langmuir wave are shown to emerge from a phase mixing effect among beam modes, revealing unexpected similarities between the stable and unstable regimes.
The effective potential acting on particles in plasmas being essentially the Debye-shielded Coulomb potential, the particles collisional transport in thermal equilibrium is calculated for all impact parameters $b$, with a convergent expression reduci ng to Rutherford scattering for small $b$. No cutoff at the Debye length scale is needed, and the Coulomb logarithm is only slightly modified.
131 - Dominique Escande 2018
Computing is not understanding. This is exemplified by the multiple and discordant interpretations of Landau damping still present after seventy years. For long deemed impossible, the mechanical N-body description of this damping, not only enables it s rigorous and simple calculation, but makes unequivocal and intuitive its interpretation as the synchronization of almost resonant passing particles. This synchronization justifies mechanically why a single formula applies to both Landau growth and damping. As to the electrostatic potential, the phase mixing of many beam modes produces Landau damping, but it is unexpectedly essential for Landau growth too. Moreover, collisions play an essential role in collisionless plasmas. In particular, Debye shielding results from a cooperative dynamical self-organization process, where collisional deflections due to a given electron diminish the apparent number of charges about it. The finite value of exponentiation rates due to collisions is crucial for the equivalent of the van Kampen phase mixing to occur in the N-body system. The N-body approach incorporates spontaneous emission naturally, whose compound effect with Landau damping drives a thermalization of Langmuir waves. ONeils damping with trapping typical of initially large enough Langmuir waves results from a phase transition. As to collisional transport, there is a smooth connection between impact parameters where the two-body Rutherford picture is correct, and those where a collective description is mandatory. The N-body approach reveals two important features of the Vlasovian limit: it is singular and it corresponds to a renormalized description of the actual N-body dynamics.
Starting from the Wigner-Moyal equation coupled to Poissons equation, a simplified set of equations describing nonlinear Landau damping of Langmuir waves is derived. This system is studied numerically, with a particular focus on the transition from t he classical to the quantum regime. In the quantum regime several new features are found. This includes a quantum modified bounce frequency, and the discovery that bounce-like amplitude oscillations can take place even in the absence of trapped particles. The implications of our results are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا