ترغب بنشر مسار تعليمي؟ اضغط هنا

SiO excitation from dense shocks in the earliest stages of massive star formation

134   0   0.0 ( 0 )
 نشر من قبل Silvia Leurini
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Molecular outflows are a direct consequence of accretion, and therefore they represent one of the best tracers of accretion processes in the still poorly understood early phases of high-mass star formation. Previous studies suggested that the SiO abundance decreases with the evolution of a massive young stellar object probably because of a decay of jet activity, as witnessed in low-mass star-forming regions. We investigate the SiO excitation conditions and its abundance in outflows from a sample of massive young stellar objects through observations of the SiO(8-7) and CO(4-3) lines with the APEX telescope. Through a non-LTE analysis, we find that the excitation conditions of SiO increase with the velocity of the emitting gas. We also compute the SiO abundance through the SiO and CO integrated intensities at high velocities. For the sources in our sample we find no significant variation of the SiO abundance with evolution for a bolometric luminosity-to-mass ratio of between 4 and 50 $L_odot/M_odot$. We also find a weak increase of the SiO(8-7) luminosity with the bolometric luminosity-to-mass ratio. We speculate that this might be explained with an increase of density in the gas traced by SiO. We find that the densities constrained by the SiO observations require the use of shock models that include grain-grain processing. For the first time, such models are compared and found to be compatible with SiO observations. A pre-shock density of $10^5, $cm$^{-3}$ is globally inferred from these comparisons. Shocks with a velocity higher than 25 km s$^{-1}$ are invoked for the objects in our sample where the SiO is observed with a corresponding velocity dispersion. Our comparison of shock models with observations suggests that sputtering of silicon-bearing material (corresponding to less than 10% of the total silicon abundance) from the grain mantles is occurring.



قيم البحث

اقرأ أيضاً

Benzonitrile ($c$-C$_6$H$_5$CN), a polar proxy for benzene ($c$-C$_6$H$_6$}), has the potential to serve as a highly convenient radio probe for aromatic chemistry, provided this ring can be found in other astronomical sources beyond the molecule-rich prestellar cloud TMC-1 where it was first reported by McGuire et al. in 2018. Here we present radio astronomical evidence of benzonitrile in four additional pre-stellar, and possibly protostellar, sources: Serpens 1A, Serpens 1B, Serpens 2, and MC27/L1521F. These detections establish benzonitrile is not unique to TMC-1; rather aromatic chemistry appears to be widespread throughout the earliest stages of star formation, likely persisting at least to the initial formation of a protostar. The abundance of benzonitrile far exceeds predictions from models which well reproduce the abundances of carbon chains, such as HC$_7$N, a cyanpolyyne with the same heavy atoms, indicating the chemistry responsible for planar carbon structures (as opposed to linear ones) in primordial sources is favorable but not well understood. The abundance of benzonitrile relative to carbon-chain molecules displays sizable variations between sources within the Taurus and Serpens clouds, implying the importance of physical conditions and initial elemental reservoirs of the clouds themselves.
To study the vertical distribution of the earliest stages of star formation in galaxies, three edge-on spirals, NGC 891, NGC 3628, and IC 5052 observed by the Spitzer Space Telescope InfraRed Array Camera (IRAC) were examined for compact 8 micron cor es using an unsharp mask technique; 173, 267, and 60 cores were distinguished, respectively. Color-color distributions suggest a mixture of PAHs and highly-extincted photospheric emission from young stars. The average V-band extinction is ~20 mag, equally divided between foreground and core. IRAC magnitudes for the clumps are converted to stellar masses assuming an age of 1 Myr, which is about equal to the ratio of the total core mass to the star formation rate in each galaxy. The extinction and stellar mass suggest an intrinsic core diameter of ~18 pc for 5% star formation efficiency. The half-thickness of the disk of 8 micron cores is 105 pc for NGC 891 and 74 pc for IC 5052, varying with radius by a factor of ~2. For NGC 3628, which is interacting, the half-thickness is 438 pc, but even with this interaction, the 8 micron disk is remarkably flat, suggesting vertical stability. Small scale structures like shingles or spirals are seen in the core positions. Very few of the 8 micron cores have optical counterparts.
To study the early phases of massive star formation, we present ALMA observations of SiO(5-4) emission and VLA observations of 6 cm continuum emission towards 32 Infrared Dark Cloud (IRDC) clumps, spatially resolved down to $lesssim 0.05$ pc. Out of the 32 clumps, we detect SiO emission in 20 clumps, and in 11 of them the SiO emission is relatively strong and likely tracing protostellar outflows. Some SiO outflows are collimated, while others are less ordered. For the six strongest SiO outflows, we estimate basic outflow properties. In our entire sample, where there is SiO emission, we find 1.3 mm continuum and infrared emission nearby, but not vice versa. We build the spectral energy distributions (SEDs) of cores with 1.3 mm continuum emission and fit them with radiative transfer (RT) models. The low luminosities and stellar masses returned by SED fitting suggest these are early stage protostars. We see a slight trend of increasing SiO line luminosity with bolometric luminosity, which suggests more powerful shocks in the vicinity of more massive YSOs. We do not see a clear relation between the SiO luminosity and the evolutionary stage indicated by $L/M$. We conclude that as a protostar approaches a bolometric luminosity of $sim 10^2 : L_{odot}$, the shocks in the outflow are generally strong enough to form SiO emission. The VLA 6 cm observations toward the 15 clumps with the strongest SiO emission detect emission in four clumps, which is likely shock ionized jets associated with the more massive ones of these protostellar cores.
182 - Junhao Liu 2020
We present 1.3 mm ALMA dust polarization observations at a resolution of $sim$0.02 pc of three massive molecular clumps, MM1, MM4, and MM9, in the infrared dark cloud G28.34+0.06. With the sensitive and high-resolution continuum data, MM1 is resolved into a cluster of condensations. The magnetic field structure in each clump is revealed by the polarized emission. We found a trend of decreasing polarized emission fraction with increasing Stokes $I$ intensities in MM1 and MM4. Using the angular dispersion function method (a modified Davis-Chandrasekhar-Fermi method), the plane-of-sky magnetic field strength in two massive dense cores, MM1-Core1 and MM4-Core4, are estimated to be $sim$1.6 mG and $sim$0.32 mG, respectively. textbf{The ordered magnetic energy is found to be smaller than the turbulent energy in the two cores, while the total magnetic energy is found to be comparable to the turbulent energy.} The total virial parameters in MM1-Core1 and MM4-Core4 are calculated to be $sim$0.76 and $sim$0.37, respectively, suggesting that massive star formation does not start in equilibrium. Using the polarization-intensity gradient-local gravity method, we found that the local gravity is closely aligned with intensity gradient in the three clumps, and the magnetic field tends to be aligned with the local gravity in MM1 and MM4 except for regions near the emission peak, which suggests that the gravity plays a dominant role in regulating the gas collapse. Half of the outflows in MM4 and MM9 are found to be aligned within 10$^{circ}$ of the condensation-scale ($<$0.05 pc) magnetic field, indicating that the magnetic field could play an important role from condensation to disk scale in the early stage of massive star formation. We also found that the fragmentation in MM1-Core1 cannot be solely explained by thermal Jeans fragmentation or turbulent Jeans fragmentation.
We performed a survey in the SiO $J=5rightarrow4$ line toward a sample of 199 Galactic massive star-forming regions at different evolutionary stages with the SMT 10 m and CSO 10.4 m telescopes. The sample consists of 44 infrared dark clouds (IRDCs), 86 protostellar candidates, and 69 young HII regions. We detected SiO $J=5rightarrow4$ line emission in 102 sources, with a detection rate of 57%, 37%, and 65% for IRDCs, protostellar candidates, and young HII regions, respectively. We find both broad line with Full Widths at Zero Power (FWZP) $>$ 20 kms and narrow line emissons of SiO in objects at various evolutionary stages, likely associated with high-velocity shocks and low-velocity shocks, respectively. The SiO luminosities do not show apparent differences among various evolutionary stages in our sample. We find no correlation between the SiO abundance and the luminosity-to-mass ratio, indicating that the SiO abundance does not vary significantly in regions at different evolutionary stages of star formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا