ترغب بنشر مسار تعليمي؟ اضغط هنا

In-gap collective mode spectrum of the Topological Kondo Insulator SmB6

153   0   0.0 ( 0 )
 نشر من قبل Wesley Fuhrman
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Samarium hexaboride (SmB$_6$) is the first strongly correlated material with a recognized non-trivial band-structure topology. Its electron correlations are seen by inelastic neutron scattering as a coherent collective excitation at the energy of 14 meV. Here we calculate the spectrum of this mode using a perturbative slave boson method. Our starting point is the recently constructed Anderson model that properly captures the band-structure topology of SmB$_6$. Most self-consistent renormalization effects are captured by a few phenomenological parameters whose values are fitted to match the calculated and experimentally measured mode spectrum in the first Brillouin zone. A simple band-structure of low-energy quasiparticles in SmB$_6$ is also modeled through this fitting procedure, because the important renormalization effects due to Coulomb interactions are hard to calculate by ab-initio methods. Despite involving uncontrolled approximations, the slave boson calculation is capable of producing a fairly good quantitative match of the energy spectrum, and a qualitative match of the spectral weight throughout the first Brillouin zone. We find that the fitted band-structure required for this match indeed puts SmB$_6$ in the class of strong topological insulators. Our analysis thus provides a detailed physical picture of how the SmB$_6$ band topology arises from strong electron interactions, and paints the collective mode as magnetically active exciton.



قيم البحث

اقرأ أيضاً

Bulk and surface state contributions to the electrical resistance of single-crystal samples of the topological Kondo insulator compound SmB6 are investigated as a function of crystal thickness and surface charge density, the latter tuned by ionic liq uid gating with electrodes patterned in a Corbino disk geometry on a single surface. By separately tuning bulk and surface conduction channels, we show conclusive evidence for a model with an insulating bulk and metallic surface states, with a crossover temperature that depends solely on the relative contributions of each conduction channel. The surface conductance, on the order of 100 e^2/h and electron-like, exhibits a field-effect mobility of 133 cm^2/V/s and a large carrier density of ~2x10^{14}/cm^2, in good agreement with recent photoemission results. With the ability to gate-modulate surface conduction by more than 25%, this approach provides promise for both fundamental and applied studies of gate-tuned devices structured on bulk crystal samples.
We present a detailed investigation of the temperature and depth dependence of the magnetic properties of 3D topological Kondo insulator SmB6 , in particular near its surface. We find that local magnetic field fluctuations detected in the bulk are su ppressed rapidly with decreasing depths, disappearing almost completely at the surface. We attribute the magnetic excitations to spin excitons in bulk SmB6 , which produce local magnetic fields of about ~1.8 mT fluctuating on a time scale of ~60 ns. We find that the excitonic fluctuations are suppressed when approaching the surface on a length scale of 40-90 nm, accompanied by a small enhancement in static magnetic fields. We associate this length scale to the size of the excitonic state.
Topological insulators host spin-polarized surface states which robustly span the band gap and hold promise for novel applications. Recent theoretical predictions have suggested that topologically protected surface states may similarly span the hybri dization gap in some strongly correlated heavy fermion materials, particularly SmB6. However, the process by which the Sm 4f electrons hybridize with the 5d electrons on the surface of SmB6, and the expected Fermi-level gap in the density of states out of which the predicted topological surface states must arise, have not been directly measured. We use scanning tunneling microscopy to conduct the first atomic resolution spectroscopic study of the cleaved surface of SmB6, and to reveal a robust hybridization gap which universally spans the Fermi level on four distinct surface morphologies despite shifts in the f band energy. Using a cotunneling model, we separate the density of states of the hybridized bands from which the predicted topological surface states must be disentangled. On all surfaces we observe residual spectral weight spanning the hybridization gap down to the lowest T, which is consistent with a topological surface state.
For the strongly correlated topological insulator SmB6 we discuss the influence of a 2x1 reconstruction of the (001) surface on the topological surface states. Depending on microscopic details, the reconstruction can be a weak or a strong perturbatio n to the electronic states. While the former leads to a weak backfolding of surface bands only, the latter can modify the surface-state dispersion and lead to a Lifshitz transition. We analyze the quasiparticle interference signal: while this tends to be weak in models for SmB6 in the absence of surface reconstruction, we find that the 2x1 reconstruction can induce novel peaks. We discuss experimental implications.
The Kondo insulator compound SmB6 has emerged as a strong candidate for the realization of a topologically nontrivial state in a strongly correlated system, a topological Kondo insulator, which can be a novel platform for investigating the interplay between nontrivial topology and emergent correlation driven phenomena in solid state systems. Electronic transport measurements on this material, however, so far showed only the robust surface dominated charge conduction at low temperatures, lacking evidence of its connection to the topological nature by showing, for example, spin polarization due to spin momentum locking. Here, we find evidence for surface state spin polarization by electrical detection of a current induced spin chemical potential difference on the surface of a SmB6 single crystal. We clearly observe a surface dominated spin voltage, which is proportional to the projection of the spin polarization onto the contact magnetization, is determined by the direction and magnitude of the charge current and is strongly temperature dependent due to the crossover from surface to bulk conduction. We estimate the lower bound of the surface state net spin polarization as 15 percent based on the quantum transport model providing direct evidence that SmB6 supports metallic spin helical surface states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا