ترغب بنشر مسار تعليمي؟ اضغط هنا

Photospheric constraints, current uncertainties in models of stellar atmospheres, and spectroscopic surveys

91   0   0.0 ( 0 )
 نشر من قبل Andrea Miglio
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We summarize here the discussions around photospheric constraints, current uncertainties in models of stellar atmospheres, and reports on ongoing spectroscopic surveys. Rather than a panorama of the state of the art, we chose to present a list of open questions that should be investigated in order to improve future analyses.



قيم البحث

اقرأ أيضاً

Numerous physical aspects of stellar physics have been presented in Ses- sion 2 and the underlying uncertainties have been tentatively assessed. We try here to highlight some specific points raised after the talks and during the general discus- sion at the end of the session and eventually at the end of the workshop. A table of model uncertainties is then drawn with the help of the participants in order to give the state of the art in stellar modeling uncertainties as of July 2013.
Stellar evolution codes play a major role in present-day astrophysics, yet they share common issues. In this work we seek to remedy some of those by the use of results from realistic and highly detailed 3D hydrodynamical simulations of stellar atmosp heres. We have implemented a new temperature stratification extracted directly from the 3D simulations into the Garching Stellar Evolution Code to replace the simplified atmosphere normally used. Secondly, we have implemented the use of a variable mixing-length parameter, which changes as a function of the stellar surface gravity and temperature -- also derived from the 3D simulations. Furthermore, to make our models consistent, we have calculated new opacity tables to match the atmospheric simulations. Here, we present the modified code and initial results on stellar evolution using it.
360 - D. Sokoloff , H. Zhang , D. Moss 2012
We investigate to what extent the current helicity distribution observed in solar active regions is compatible with solar dynamo models. We use an advanced 2D mean-field dynamo model with dynamo action largely concentrated near the bottom of the conv ective zone, and dynamo saturation based on the evolution of the magnetic helicity and algebraic quenching. For comparison, we also studied a more basic 2D mean-field dynamo model with simple algebraic alpha quenching only. Using these numerical models we obtain butterfly diagrams for both the small-scale current helicity and the large-scale magnetic helicity, and compare them with the butterfly diagram for the current helicity in active regions obtained from observations. This comparison shows that the current helicity of active regions, as estimated by $-A cdot B$ evaluated at the depth from which the active region arises, resembles the observational data much better than the small-scale current helicity calculated directly from the helicity evolution equation. Here $B$ and $A$ are respectively the dynamo generated mean magnetic field and its vector potential.
Context. The availability of asteroseismic constraints for a large sample of red giant stars from the CoRoT and Kepler missions paves the way for various statistical studies of the seismic properties of stellar populations. Aims. We use the first d etailed spectroscopic study of 19 CoRoT red-giant stars (Morel et al 2014) to compare theoretical stellar evolution models to observations of the open cluster NGC 6633 and field stars. Methods. In order to explore the effects of rotation-induced mixing and thermohaline instability, we compare surface abundances of carbon isotopic ratio and lithium with stellar evolution predictions. These chemicals are sensitive to extra-mixing on the red-giant branch. Results. We estimate mass, radius, and distance for each star using the seismic constraints. We note that the Hipparcos and seismic distances are different. However, the uncertainties are such that this may not be significant. Although the seismic distances for the cluster members are self consistent they are somewhat larger than the Hipparcos distance. This is an issue that should be considered elsewhere. Models including thermohaline instability and rotation-induced mixing, together with the seismically determined masses can explain the chemical properties of red-giants targets. However, with this sample of stars we cannot perform stringent tests of the current stellar models. Tighter constraints on the physics of the models would require the measurement of the core and surface rotation rates, and of the period spacing of gravity-dominated mixed modes. A larger number of stars with longer times series, as provided by Kepler or expected with Plato, would help for ensemble asteroseismology.
107 - Anna Gallazzi 2009
The age and chemical composition of the stars in present-day galaxies carry important clues about their star formation processes. The latest generation of population synthesis models have allowed to derive age and stellar metallicity estimates for la rge samples of low-redshift galaxies. After reviewing the main results about the distribution in ages and metallicities as a function of galaxy mass, I will concentrate on recent analysis that aims at disentangling the dependences of stellar populations properties on environment and on galaxy stellar mass. Finally, new models that predict the response of the full spectrum to variations in [alpha/Fe] will allow us to derive accurate estimates of element abundance ratios and gain deeper insight into the timescales of star formation cessation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا