ﻻ يوجد ملخص باللغة العربية
We search the complete Hubble Frontier Field dataset of Abell 2744 and its parallel field for z~10 sources to further refine the evolution of the cosmic star-formation rate density (SFRD) at z>8. We independently confirm two images of the recently discovered triply-imaged z~9.8 source by Zitrin et al. (2014) and set an upper limit for similar z~10 galaxies with red colors of J_125-H_160>1.2 in the parallel field of Abell 2744. We utilize extensive simulations to derive the effective selection volume of Lyman-break galaxies at z~10, both in the lensed cluster field and in the adjacent parallel field. Particular care is taken to include position-dependent lensing shear to accurately account for the expected sizes and morphologies of highly-magnified sources. We show that both source blending and shear reduce the completeness at a given observed magnitude in the cluster, particularly near the critical curves. These effects have a significant, but largely overlooked, impact on the detectability of high-redshift sources behind clusters, and substantially reduce the expected number of highly-magnified sources. The detections and limits from both pointings result in a SFRD which is higher by 0.4+-0.4 dex than previous estimates at z~10 from blank fields. Nevertheless, the combination of these new results with all other estimates remain consistent with a rapidly declining SFRD in the 170 Myr from z~8 to z~10 as predicted by cosmological simulations and dark-matter halo evolution in LambdaCDM. Once biases introduced by magnification-dependent completeness are accounted for, the full six cluster and parallel Frontier Field program will be an extremely powerful new dataset to probe the evolution of the galaxy population at z>8 before the advent of the JWST.
We analyse 14 LBGs at z~2.8-3.8 constituting the only sample where both a spectroscopic measurement of their metallicity and deep IR observations (CANDELS+HUGS survey) are available. Fixing the metallicity of population synthesis models to the observ
The first generation of stars were born a few hundred million years after the big bang. These stars synthesized elements heavier than H and He, that are later expelled into the interstellar medium, initiating the rise of metals. Within this enriched
We present here a three-dimesional hydrodynamical simulation for star formation. Our aim is to explore the effect of the metal-line cooling on the thermodynamics of the star-formation process. We explore the effect of changing the metallicty of the g
Star-forming clumps dominate the rest-frame ultraviolet morphology of galaxies at the peak of cosmic star formation. If turbulence driven fragmentation is the mechanism responsible for their formation, we expect their stellar mass function to follow
In this paper, we investigate the relationship between star formation and structure, using a mass-complete sample of 27,893 galaxies at $0.5<z<2.5$ selected from 3D-HST. We confirm that star-forming galaxies are larger than quiescent galaxies at fixe