ﻻ يوجد ملخص باللغة العربية
At the 120-GeV proton accelerator facilities of Fermilab, USA, water samples were collected from the cooling water systems for the target, magnetic horn1, magnetic horn2, decay pipe, and hadron absorber at the NuMI beamline as well as from the cooling water systems for the collection lens, pulse magnet and collimator, and beam absorber at the antiproton production target station, just after the shutdown of the accelerators for a maintenance period. Specific activities of {gamma} -emitting radionuclides and 3H in these samples were determined using high-purity germanium detectors and a liquid scintillation counter. The cooling water contained various radionuclides depending on both major and minor materials in contact with the water. The activity of the radionuclides depended on the presence of a deionizer. Specific activities of 3H were used to estimate the residual rates of 7Be. The estimated residual rates of 7Be in the cooling water were approximately 5% for systems without deionizers and less than 0.1% for systems with deionizers, although the deionizers function to remove 7Be from the cooling water.
The Long Baseline Neutrino Facility (LBNF) project will build a beamline located at Fermilab to create and aim an intense neutrino beam of appropriate energy range toward the DUNE detectors at the SURF facility in Lead, South Dakota. Neutrino product
The Neutrinos at the Main Injector (NuMI) facility is a conventional horn-focused neutrino beam which produces muon neutrinos from a beam of mesons directed into a long evacuated decay volume. The relative alignment of the primary proton beam, target
The Neutrinos at the Main Injector (NuMI) facility at Fermilab began operations in late 2004. NuMI will deliver an intense muon neutrino beam of variable energy (2-20 GeV) directed into the Earth at 58 mrad for short (~1km) and long (~700-900 km) bas
Measurements and calculations of the air activation at a high-energy proton accelerator are described. The quantity of radionuclides released outdoors depends on operation scenarios including details of the air exchange inside the facility. To improv
The monochromator beamline at the FLASH facility at DESY is the worldwide first XUV monochromator beamline operational on a free electron laser (FEL)source. Being a single-user machine, FLASH demands a high flexibility of the instrumentation to fulfi