ﻻ يوجد ملخص باللغة العربية
We analyze the impact of loss in lattices of coupled optical waveguides and find that in such case, the hopping between adjacent waveguides is necessarily complex. This results not only in a transition of the light spreading from ballistic to diffusive, but also in a new kind of diffraction that is caused by loss dispersion. We prove our theoretical results with experimental observations.
We report on the experimental observation of reduced light energy transport and disorder-induced localization close to a boundary of a truncated one-dimensional (1D) disordered photonic lattice. Our observations uncover that near the boundary a highe
We propose a feasible waveguide design optimized for harnessing Stimulated Brillouin Scattering with long-lived phonons. The design consists of a fully suspended ridge waveguide surrounded by a 1D phononic crystal that mitigates losses to the substra
We propose a concept of chiral photonic limiters utilising topologically protected localised midgap defect states in a photonic waveguide. The chiral symmetry alleviates the effects of structural imperfections and guaranties a high level of resonant
Parity-time (PT) symmetry has attracted a lot of attention since the concept of pseudo-Hermitian dynamics of open quantum systems was first demonstrated two decades ago. Contrary to their Hermitian counterparts, non-conservative environments a priori
Photonic lattices are usually considered to be limited by their lack of methods to include interactions. We address this issue by introducing mean-field interactions through optical components which are external to the photonic lattice. The proposed