ترغب بنشر مسار تعليمي؟ اضغط هنا

Phenotypic constraints promote latent versatility and carbon efficiency in metabolic networks

126   0   0.0 ( 0 )
 نشر من قبل Marco Bardoscia
 تاريخ النشر 2014
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

System-level properties of metabolic networks may be the direct product of natural selection or arise as a by-product of selection on other properties. Here we study the effect of direct selective pressure for growth or viability in particular environments on two properties of metabolic networks: latent versatility to function in additional environments and carbon usage efficiency. Using a Markov Chain Monte Carlo (MCMC) sampling based on Flux Balance Analysis (FBA), we sample from a known biochemical universe random viable metabolic networks that differ in the number of directly constrained environments. We find that the latent versatility of sampled metabolic networks increases with the number of directly constrained environments and with the size of the networks. We then show that the average carbon wastage of sampled metabolic networks across the constrained environments decreases with the number of directly constrained environments and with the size of the networks. Our work expands the growing body of evidence about nonadaptive origins of key functional properties of biological networks.



قيم البحث

اقرأ أيضاً

A metabolic model can be represented as bipartite graph comprising linked reaction and metabolite nodes. Here it is shown how a network of conserved fluxes can be assigned to the edges of such a graph by combining the reaction fluxes with a conserved metabolite property such as molecular weight. A similar flux network can be constructed by combining the primal and dual solutions to the linear programming problem that typically arises in constraint-based modelling. Such constructions may help with the visualisation of flux distributions in complex metabolic networks. The analysis also explains the strong correlation observed between metabolite shadow prices (the dual linear programming variables) and conserved metabolite properties. The methods were applied to recent metabolic models for Escherichia coli, Saccharomyces cerevisiae, and Methanosarcina barkeri. Detailed results are reported for E. coli; similar results were found for the other organisms.
An important goal of medical research is to develop methods to recover the loss of cellular function due to mutations and other defects. Many approaches based on gene therapy aim to repair the defective gene or to insert genes with compensatory funct ion. Here, we propose an alternative, network-based strategy that aims to restore biological function by forcing the cell to either bypass the functions affected by the defective gene, or to compensate for the lost function. Focusing on the metabolism of single-cell organisms, we computationally study mutants that lack an essential enzyme, and thus are unable to grow or have a significantly reduced growth rate. We show that several of these mutants can be turned into viable organisms through additional gene deletions that restore their growth rate. In a rather counterintuitive fashion, this is achieved via additional damage to the metabolic network. Using flux balance-based approaches, we identify a number of synthetically viable gene pairs, in which the removal of one enzyme-encoding gene results in a nonviable phenotype, while the deletion of a second enzyme-encoding gene rescues the organism. The systematic network-based identification of compensatory rescue effects may open new avenues for genetic interventions.
165 - Jing Zhao , Guo-Hui Ding , Lin Tao 2007
The architecture of biological networks has been reported to exhibit high level of modularity, and to some extent, topological modules of networks overlap with known functional modules. However, how the modular topology of the molecular network affec ts the evolution of its member proteins remains unclear. In this work, the functional and evolutionary modularity of Homo sapiens (H. sapiens) metabolic network were investigated from a topological point of view. Network decomposition shows that the metabolic network is organized in a highly modular core-periphery way, in which the core modules are tightly linked together and perform basic metabolism functions, whereas the periphery modules only interact with few modules and accomplish relatively independent and specialized functions. Moreover, over half of the modules exhibit co-evolutionary feature and belong to specific evolutionary ages. Peripheral modules tend to evolve more cohesively and faster than core modules do. The correlation between functional, evolutionary and topological modularity suggests that the evolutionary history and functional requirements of metabolic systems have been imprinted in the architecture of metabolic networks. Such systems level analysis could demonstrate how the evolution of genes may be placed in a genome-scale network context, giving a novel perspective on molecular evolution.
Despite their topological complexity almost all functional properties of metabolic networks can be derived from steady-state dynamics. Indeed, many theoretical investigations (like flux-balance analysis) rely on extracting function from steady states . This leads to the interesting question, how metabolic networks avoid complex dynamics and maintain a steady-state behavior. Here, we expose metabolic network topologies to binary dynamics generated by simple local rules. We find that the networks response is highly specific: Complex dynamics are systematically reduced on metabolic networks compared to randomized networks with identical degree sequences. Already small topological modifications substantially enhance the capacity of a network to host complex dynamic behavior and thus reduce its regularizing potential. This exceptionally pronounced regularization of dynamics encoded in the topology may explain, why steady-state behavior is ubiquitous in metabolism.
80 - E. Almaas , Z.N. Oltvai , 2006
Understanding the system level adaptive changes taking place in an organism in response to variations in the environment is a key issue of contemporary biology. Current modeling approaches such as the constraint-based flux balance analyses (FBA) have proved highly successful in analyzing the capabilities of cellular metabolism, including its capacity to predict deletion phenotypes, the ability to calculate the relative flux values of metabolic reactions and the properties of alternate optimal growth states. Here, we use FBA to thoroughly assess the activity of the Escherichia coli, Helicobacter pylori, and Saccharomyces cerevisiae metabolism in 30,000 diverse simulated environments. We identify a set of metabolic reactions forming a connected metabolic core that carry non-zero fluxes under all growth conditions, and whose flux variations are highly correlated. Furthermore, we find that the enzymes catalyzing the core reactions display a considerably higher fraction of phenotypic essentiality and evolutionary conservation than those catalyzing non-core reactions. Cellular metabolism is characterized by a large number of species-specific conditionally-active reactions organized around an evolutionary conserved always active metabolic core. Finally, we find that most current antibiotics interfering with the bacterial metabolism target the core enzymes, indicating that our findings may have important implications for antimicrobial drug target discovery.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا