ﻻ يوجد ملخص باللغة العربية
The characterization of cattle demographics and especially movements is an essential component in the modeling of dynamics in cattle systems, yet for cattle systems of the United States (US), this is missing. Through a large-scale maximum entropy optimization formulation, we estimate cattle movement parameters to characterize the movements of cattle across $10$ Central States and $1034$ counties of the United States. Inputs to the estimation problem are taken from the United States Department of Agriculture National Agricultural Statistics Service database and are pre-processed in a pair of tightly constrained optimization problems to recover non-disclosed elements of data. We compare stochastic subpopulation-based movements generated from the estimated parameters to operation-based movements published by the United States Department of Agriculture. For future Census of Agriculture distributions, we propose a series of questions that enable improvements for our method without compromising the privacy of cattle operations. Our novel method to estimate cattle movements across large US regions characterizes county-level stratified subpopulations of cattle for data-driven livestock modeling. Our estimated movement parameters suggest a significant risk level for US cattle systems.
The COVID-19 outbreak is asynchronous in US counties. Mitigating the COVID-19 transmission requires not only the state and federal level order of protective measures such as social distancing and testing, but also public awareness of time-dependent r
Severe thunderstorms can have devastating impacts. Concurrently high values of convective available potential energy (CAPE) and storm relative helicity (SRH) are known to be conducive to severe weather, so high values of PROD=$sqrt{mathrm{CAPE}} time
In the context of multiparameter quantum estimation theory, we investigate the construction of linear schemes in order to infer two classical parameters that are encoded in the quadratures of two quantum coherent states. The optimality of the scheme
Microbiome data analyses require statistical tools that can simultaneously decode microbes reactions to the environment and interactions among microbes. We introduce CARlasso, the first user-friendly open-source and publicly available R package to fi
In this article, the reliabilities $R(t)=P(Xgeq t)$, when $X$ follows two-parameter geometric distribution and $R=P(Xleq Y)$, arises under stress-strength setup, when X and Y assumed to follow two-parameter geometric independently have been found out