ترغب بنشر مسار تعليمي؟ اضغط هنا

Nematic spin correlations in the tetragonal state of uniaxial strained BaFe2-xNixAs2

105   0   0.0 ( 0 )
 نشر من قبل Xingye Lu Mr.
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Understanding the microscopic origins of electronic phases in high-transition temperature (high-Tc) superconductors is important for elucidating the mechanism of superconductivity. In the paramagnetic tetragonal phase of BaFe2-xTxAs2 (where T is Co or Ni) iron pnictides, an in-plane resistivity anisotropy has been observed. Here we use inelastic neutron scattering to show that low-energy spin excitations in these materials change from four-fold symmetric to two-fold symmetric at temperatures corresponding to the onset of the in-plane resistivity anisotropy. Because resistivity and spin excitation anisotropies both vanish near optimal superconductivity, we conclude that they are likely intimately connected.



قيم البحث

اقرأ أيضاً

We use inelastic neutron scattering to systematically investigate the Ni-doping evolution of the low-energy spin excitations in BaFe2-xNixAs2 spanning from underdoped antiferromagnet to overdoped superconductor (0.03< x < 0.18). In the undoped state, the low-energy (<80 meV) spin waves of BaFe2As2 form transversely elongated ellipses in the [H, K] plane of the reciprocal space. Upon Ni-doping, the c-axis magnetic exchange coupling is rapidly suppressed and the momentum distribution of spin excitations in the [H, K] plane is enlarged in both the transverse and longitudinal directions with respect to the in-plane AF ordering wave vector of the parent compound. As a function of increasing Ni-doping x, the spin excitation widths increase linearly but with a larger rate along the transverse direction. These results are in general agreement with calculations of dynamic susceptibility based on the random phase approximation (RPA) in an itinerant electron picture. For samples near optimal superconductivity at x= 0.1, a neutron spin resonance appears in the superconducting state. Upon further increasing the electron-doping to decrease the superconducting transition temperature Tc, the intensity of the low-energy magnetic scattering decreases and vanishes concurrently with vanishing superconductivity in the overdoped side of the superconducting dome. Comparing with the low-energy spin excitations centered at commensurate AF positions for underdoped and optimally doped materials (x<0.1), spin excitations in the over-doped side (x=0.15) form transversely incommensurate spin excitations, consistent with the RPA calculation. Therefore, the itinerant electron approach provides a reasonable description to the low-energy AF spin excitations in BaFe2-xNixAs2.
Magnetic interactions are generally believed to play a key role in mediating electron pairing for superconductivity in iron arsenides; yet their character is only partially understood. Experimentally, the antiferromagnetic (AF) transition is always p receded by or coincident with a tetragonal to orthorhombic structural distortion. Although it has been suggested that this lattice distortion is driven by an electronic nematic phase, where a spontaneously generated electronic liquid crystal state breaks the C4 rotational symmetry of the paramagnetic state, experimental evidence for electronic anisotropy has been either in the low-temperature orthorhombic phase or the tetragonal phase under uniaxial pressure that breaks this symmetry. Here we use inelastic neutron scattering to demonstrate the presence of a large in-plane spin anisotropy above TN in the unstressed tetragonal phase of BaFe2As2. In the low-temperature orthorhombic phase, we find highly anisotropic spin waves with a large damping along the AF a-axis direction. On warming the system to the paramagnetic tetragonal phase, the low-energy spin waves evolve into quasi-elastic excitations, while the anisotropic spin excitations near the zone boundary persist. These results strongly suggest that the spin nematicity we find in the tetragonal phase of BaFe2As2 is the source of the electronic and orbital anisotropy observed above TN by other probes, and has profound consequences for the physics of these materials.
149 - J. Li , B. Lei , D. Zhao 2019
The importance of the spin-orbit coupling (SOC) effect in Fe-based superconductors (FeSCs) has recently been under hot debate. Considering the Hunds coupling-induced electronic correlation, the understanding of the role of SOC in FeSCs is not trivial and is still elusive. Here, through a comprehensive study of 77Se and 57Fe nuclear magnetic resonance, a nontrivial SOC effect is revealed in the nematic state of FeSe. First, the orbital-dependent spin susceptibility, determined by the anisotropy of the 57Fe Knight shift, indicates a predominant role from the 3dxy orbital, which suggests the coexistence of local and itinerant spin degrees of freedom (d.o.f.) in the FeSe. Then, we reconfirm that the orbital reconstruction below the nematic transition temperature (Tnem ~ 90 K) happens not only on the 3dxz and 3dyz orbitals but also on the 3dxy orbital, which is beyond a trivial ferro-orbital order picture. Moreover, our results also indicate the development of a coherent coupling between the local and itinerant spin d.o.f. below Tnem, which is ascribed to a Hunds coupling-induced electronic crossover on the 3dxy orbital. Finally, due to a nontrivial SOC effect, sizable in-plane anisotropy of the spin susceptibility emerges in the nematic state, suggesting a spin-orbital-intertwined nematicity rather than simply spin- or orbital-driven nematicity}. The present work not only reveals a nontrivial SOC effect in the nematic state but also sheds light on the mechanism of nematic transition in FeSe.
The origin of the electronic nematicity in FeSe, which occurs below a tetragonal-to-orthorhombic structural transition temperature $T_s$ ~ 90 K, well above the superconducting transition temperature $T_c = 9$ K, is one of the most important unresolve d puzzles in the study of iron-based superconductors. In both spin- and orbital-nematic models, the intrinsic magnetic excitations at $mathbf{Q}_1=(1, 0)$ and $mathbf{Q}_2=(0, 1)$ of twin-free FeSe are expected to behave differently below $T_s$. Although anisotropic spin fluctuations below 10 meV between $mathbf{Q}_1$ and $mathbf{Q}_2$ have been unambiguously observed by inelastic neutron scattering around $T_c (<<T_s)$, it remains unclear whether such an anisotropy also persists at higher energies and associates with the nematic transition $T_s$. Here we use resonant inelastic x-ray scattering (RIXS) to probe the high-energy magnetic excitations of uniaxial-strain detwinned FeSe. A prominent anisotropy between the magnetic excitations along the $H$ and $K$ directions is found to persist to $sim200$ meV, which is even more pronounced than the anisotropy of spin waves in BaFe$_2$As$_2$. This anisotropy decreases gradually with increasing temperature and finally vanishes at a temperature around the nematic transition temperature $T_s$. Our results reveal an unprecedented strong spin-excitation anisotropy with a large energy scale well above the $d_{xz}/d_{yz}$ orbital splitting, suggesting that the nematic phase transition is primarily spin-driven. Moreover, the measured high-energy spin excitations are dispersive and underdamped, which can be understood from a local-moment perspective. Our findings provide the much-needed understanding of the mechanism for the nematicity of FeSe and point to a unified description of the correlation physics across seemingly distinct classes of Fe-based superconductors.
170 - M. Fu , D. A. Torchetti , T. Imai 2012
We report a 75-As single crystal NMR investigation of LaFeAsO, the parent phase of a pnictide high Tc superconductor. We demonstrate that spin dynamics develop a strong two-fold anisotropy within each orthorhombic domain below the tetragonal-orthorho mbic structural phase transition at T[TO]~156 K. This intermediate state with a dynamical breaking of the rotational symmetry freezes progressively into a spin density wave (SDW) below T[SDW]~142 K. Our findings are consistent with the presence of a spin nematic state below T[TO] with an incipient magnetic order.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا