ترغب بنشر مسار تعليمي؟ اضغط هنا

On repeated sequential closures of constructible functions in valuations

98   0   0.0 ( 0 )
 نشر من قبل Semyon Alesker
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English
 تأليف Semyon Alesker




اسأل ChatGPT حول البحث

The space of constructible functions form a dense subspace of the space of generalized valuations. In this note we prove a somewhat stronger property that the sequential closure, taken sufficiently many (in fact, infinitely many) times, of the former space is equal to the latter one. This stronger property is necessary for some applications in the theory of valuations on manifolds.



قيم البحث

اقرأ أيضاً

The existence of a homogeneous decomposition for continuous and epi-translation invariant valuations on super-coercive functions is established. Continuous and epi-translation invariant valuations that are epi-homogeneous of degree $n$ are classified . By duality, corresponding results are obtained for valuations on finite-valued convex functions.
For a collection of $N$ unit vectors $mathbf{X}={x_i}_{i=1}^N$, define the $p$-frame energy of $mathbf{X}$ as the quantity $sum_{i eq j} |langle x_i,x_j rangle|^p$. In this paper, we connect the problem of minimizing this value to another optimizatio n problem, so giving new lower bounds for such energies. In particular, for $p<2$, we prove that this energy is at least $2(N-d) p^{-frac p 2} (2-p)^{frac {p-2} 2}$ which is sharp for $dleq Nleq 2d$ and $p=1$. We prove that for $1leq m<d$, a repeated orthonormal basis construction of $N=d+m$ vectors minimizes the energy over an interval, $pin[1,p_m]$, and demonstrate an analogous result for all $N$ in the case $d=2$. Finally, in connection, we give conjectures on these and other energies.
244 - Semyon Alesker 2017
The notion of a valuation on convex bodies is very classical. The notion of a valuation on a class of functions was recently introduced and studied by M. Ludwig and others. We study an explicit relation between continuous valuations on convex functio ns which are invariant under adding arbitrary linear functionals, and translations invariant continuous valuations on convex bodies. More precisely, we construct a natural linear map from the former space to the latter and prove that it has dense image and infinite dimensional kernel. The proof uses the authors irreducibility theorem and few properties of the real Monge-Ampere operators due to A.D. Alexandrov and Z. Blocki. Fur- thermore we show how to use complex, quaternionic, and octonionic Monge-Ampere operators to construct more examples of continuous valuations on convex functions in an analogous way.
202 - Semyon Alesker 2016
A new class of plurisubharmonic functions on the octonionic plane O^2= R^{16} is introduced. An octonionic version of theorems of A.D. Aleksandrov and Chern- Levine-Nirenberg, and Blocki are proved. These results are used to construct new examples of continuous translation invariant valuations on convex subsets of O^2=R^{16}. In particular a new example of Spin(9)-invariant valuation on R^{16} is given.
146 - Semyon Alesker 2011
Recently an algebra of smooth valuations was attached to any smooth manifold. Roughly put, a smooth valuation is finitely additive measure on compact submanifolds with corners which satisfies some extra properties. In this note we initiate a study of modules over smooth valuations. More specifically we study finitely generated projective modules in analogy to the study of vector bundles on a manifold. In particular it is shown that on a compact manifold there exists a canonical isomorphism between the $K$-ring constructed out of finitely generated projective modules over valuations and the classical topological $K^0$-ring constructed out of vector bundles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا