ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence for spin-triplet superconductivity in U$_2$PtC$_2$ from $^{195}$Pt NMR

123   0   0.0 ( 0 )
 نشر من قبل Andrew Mounce
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nuclear magnetic resonance (NMR) measurements on the $^{195}$Pt nucleus in an aligned powder of the moderately heavy-fermion material U2PtC2 are consistent with spin-triplet pairing in its superconducting state. Across the superconducting transition temperature and to much lower temperatures, the NMR Knight shift is temperature independent for field both parallel and perpendicular to the tetragonal c-axis, expected for triplet equal-spin pairing superconductivity. The NMR spin-lattice relaxation rate 1/T$_1$, in the normal state, exhibits characteristics of ferromagnetic fluctuations, compatible with an enhanced Wilson ratio. In the superconducting state, 1/T$_1$ follows a power law with temperature without a coherence peak giving additional support that U$_2$PtC$_2$ is an unconventional superconductor. Bulk measurements of the AC-susceptibility and resistivity indicate that the upper critical field exceeds the Pauli limiting field for spin-singlet pairing and is near the orbital limiting field, an additional indication for spin-triplet pairing.



قيم البحث

اقرأ أيضاً

Superconductivity has its universal origin in the formation of bound (Cooper) pairs of electrons that can move through the lattice without resistance below the superconducting transition temperature Tc[1]. While electron Cooper pairs in most supercon ductors form anti-parallel spin-singlets with total spin S=0 [2,3], they can also form parallel spin-triplet Cooper pairs with S=1 and an odd parity wavefunction[4-6], analogous to the equal spin pairing state in the superfluid 3He[7]. Spin-triplet pairing is important because it can host topological states and Majorana fermions relevant for fault tolerant quantum computation[8-11]. However, spin-triplet pairing is rare and has not been unambiguously identified in any solid state systems. Since spin-triplet pairing is usually mediated by ferromagnetic (FM) spin fluctuations[4-6], uranium based heavy-fermion materials near a FM instability are considered ideal candidates for realizing spin-triplet superconductivity[12-14]. Indeed, UTe2, which has a Tc=1.6K [15,16], has been identified as a strong candidate for chiral spin-triplet topological superconductor near a FM instability[15-22], although the system also exhibits antiferromagnetic (AF) spin fluctuations[23,24]. Here we use inelastic neutron scattering (INS) to show that superconductivity in UTe2 is coupled with a sharp magnetic excitation at the Brillouin zone (BZ) boundary near AF order, analogous to the resonance seen in high-Tc copper oxide[25-27], iron-based[28,29], and heavy-fermion superconductors[30-32]. We find that the resonance in UTe2 occurs below Tc at an energy Er=7.9kBTc (kB is Boltzmanns constant) and at the expense of low-energy spin fluctuations. Since the resonance has only been found in spin-singlet superconductors near an AF instability[25-32], its discovery in UTe2 suggests that AF spin fluctuations can also induce spin-triplet pairing for superconductivity[33].
The layered quasi-one-dimensional molecular superconductor (TMTSF)$_2$PF$_6$ is a very exotic material with a superconducting order parameter whose ground state symmetry has remained ill-defined. Here we present a pulsed NMR Knight shift (K) study of $^{77}$Se measured simultaneously with transport in pressurized (TMTSF)$_2$PF$_6$. The Knight shift is linearly dependent on the electron spin susceptibility $chi_s$, and is therefore a direct measure of the spin polarization in the superconducting state. For a singlet superconductor, the spin contribution to the Knight shift, K$_s$, falls rapidly on cooling through the transition. The present experiments indicate no observable change in K between the metallic and superconducting states, and thus strongly support the hypothesis of triplet p-wave superconductivity in (TMTSF)$_2$PF$_6$.
122 - Yi Cui , C. Li , Q. Li 2020
Despite the recent discovery of superconductivity in Nd$_{1-x}$Sr$_{x}$NiO$_2$ thin films, the absence of superconductivity and antiferromagnetism in their bulk materials remain a puzzle. Here we report the $^{1}$H NMR measurements on powdered Nd$_{0 .85}$Sr$_{0.15}$NiO$_2$ samples by taking advantage of the enriched proton concentration after hydrogen annealing. We find a large full width at half maximum of the spectrum, which keeps increasing with decreasing the temperature and exhibits an upturn behavior at low temperatures. The spin-lattice relaxation rate $1/^{1}T_1$ is strongly enhanced when lowering the temperature, developing a broad peak at about 40 K, then decreases following a spin-wave-like behavior $1/^{1}T_1{sim}T^2$ at lower temperatures. These results evidence a short-range glassy antiferromagnetic ordering of magnetic moments below 40 K and dominant antiferromagnetic fluctuations extending to much higher temperatures. Our findings reveal the strong electron correlations in bulk Nd$_{0.85}$Sr$_{0.15}$NiO$_2$, and shed light on the mechanism of superconductivity observed in films of nickelates.
203 - H. Xiao , T. Hu , A. P. Dioguardi 2011
Resistivity, magnetization and microscopic $^{75}$As nuclear magnetic resonance (NMR) measurements in the antiferromagnetically ordered state of the iron-based superconductor parent material CaFe$_2$As$_2$ exhibit anomalous features that are consiste nt with the collective freezing of domain walls. Below $T^*approx 10$ K, the resistivity exhibits a peak and downturn, the bulk magnetization exhibits a sharp increase, and $^{75}$As NMR measurements reveal the presence of slow fluctuations of the hyperfine field. These features in both the charge and spin response are strongly field dependent, are fully suppressed by $H^*approx 15$ T, and suggest the presence of filamentary superconductivity nucleated at the antiphase domain walls in this material.
665 - S. Y. Zhou , X. L. Li , B. Y. Pan 2012
The thermal conductivity $kappa$ of superconductor Ir$_{1-x}$Pt$_{x}$Te$_2$ ($x$ = 0.05) single crystal with strong spin-orbital coupling was measured down to 50 mK. The residual linear term $kappa_0/T$ is negligible in zero magnetic field. In low ma gnetic field, $kappa_0/T$ shows a slow field dependence. These results demonstrate that the superconducting gap of Ir$_{1-x}$Pt$_{x}$Te$_2$ is nodeless, and the pairing symmetry is likely conventional s-wave, despite the existence of strong spin-orbital coupling and a quantum critical point.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا