ﻻ يوجد ملخص باللغة العربية
By successive oxygen treatments of graphene non-local spin-valve devices we achieve a gradual increase of the contact resistance area products ($R_cA$) of Co/MgO spin injection and detection electrodes and a transition from linear to non-linear characteristics in the respective differential dV-dI-curves. With this manipulation of the contacts both spin lifetime and amplitude of the spin signal can significantly be increased by a factor of seven in the same device. This demonstrates that contact-induced spin dephasing is the bottleneck for spin transport in graphene devices with small $R_cA$ values. With increasing $R_cA$ values, we furthermore observe the appearance of a second charge neutrality point (CNP) in gate dependent resistance measurements. Simultaneously, we observe a decrease of the gate voltage separation between the two CNPs. The strong enhancement of the spin transport properties as well as the changes in charge transport are explained by a gradual suppression of a Co/graphene interaction by improving the oxide barrier during oxygen treatment.
We investigate spin and charge transport in both single and bilayer graphene non-local spin-valve devices. Similar to previous studies on bilayer graphene, we observe an inverse dependence of the spin lifetime on the carrier mobility in our single la
Recently, it has been shown that oxide barriers in graphene-based non-local spin-valve structures can be the bottleneck for spin transport. The barriers may cause spin dephasing during or right after electrical spin injection which limit spin transpo
Graphene - a single atomic layer of graphite - is a recently-found two-dimensional form of carbon, which exhibits high crystal quality and ballistic electron transport at room temperature. Soft magnetic NiFe electrodes have been used to inject polari
Hydrogen adsorbates in graphene are interesting as they are not only strong Coulomb scatterers but they also induce a change in orbital hybridization of the carbon network from sp^2 into sp^3. This change increases the spin-orbit coupling and is expe
In this review we discuss spin and charge transport properties in graphene-based single-layer and few-layer spin-valve devices. We give an overview of challenges and recent advances in the field of device fabrication and discuss two of our fabricatio