ترغب بنشر مسار تعليمي؟ اضغط هنا

The mystery of spectral breaks: Lyman continuum absorption by photon-photon pair production in the Fermi GeV spectra of bright blazars

453   0   0.0 ( 0 )
 نشر من قبل Juri Poutanen
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We reanalyze Fermi/LAT gamma-ray spectra of bright blazars with a higher photon statistics than in previous works and with new Pass 7 data representation. In the spectra of the brightest blazar 3C 454.3 and possibly of 4C +21.35 we detect breaks at 5 GeV (in the rest frame) associated with the photon-photon pair production absorption by He II Lyman continuum (LyC). We also detect confident breaks at 20 GeV associated with hydrogen LyC both in the individual spectra and in the stacked redshift-corrected spectrum of several bright blazars. The detected breaks in the stacked spectra univocally prove that they are associated with atomic ultraviolet emission features of the quasar broad-line region (BLR). The dominance of the absorption by hydrogen Ly complex over He II, rather small detected optical depth, and the break energy consistent with the head-on collisions with LyC photons imply that the gamma-ray emission site is located within the BLR, but most of the BLR emission comes from a flat disk-like structure producing little opacity. Alternatively, the LyC emission region size might be larger than the BLR size measured from reverberation mapping, and/or the gamma-ray emitting region is extended. These solutions would resolve a long-standing issue how the multi-hundred GeV photons can escape from the emission zone without being absorbed by softer photons.



قيم البحث

اقرأ أيضاً

The Lyman Continuum photon production efficiency ($xi_{rm ion}$) is a critical ingredient for inferring the number of photons available to reionise the intergalactic medium. To estimate the theoretical production efficiency in the high-redshift Unive rse we couple the BlueTides cosmological hydrodynamical simulation with a range of stellar population synthesis models. We find Lyman Continuum photon production efficiencies of $log_{10}(xi_{rm ion}/{rm erg^{-1}, Hz})approx 25.1-25.5$ depending on the choice of stellar population synthesis model. These results are broadly consistent with recent observational constraints at high-redshift though favour a model incorporating the effects of binary evolution
(Abridged) We have conducted a detailed investigation of the broad-band spectral properties of the gamma-ray selected blazars of the Fermi LAT Bright AGN Sample (LBAS). By combining our accurately estimated Fermi gamma-ray spectra with Swift, radio, infra-red, optical and other hard X-ray/gamma-ray data, collected within three months of the LBAS data taking period, we were able to assemble high-quality and quasi-simultaneous Spectral Energy Distributions (SED) for 48 LBAS blazars.The SED of these gamma-ray sources is similar to that of blazars discovered at other wavelengths, clearly showing, in the usual Log $ u $ - Log $ u$ F$_ u$ representation, the typical broad-band spectral signatures normally attributed to a combination of low-energy synchrotron radiation followed by inverse Compton emission of one or more components. We have used these SEDs to characterize the peak intensity of both the low and the high-energy components. The results have been used to derive empirical relationships that estimate the position of the two peaks from the broad-band colors (i.e. the radio to optical and optical to X-ray spectral slopes) and from the gamma-ray spectral index. Our data show that the synchrotron peak frequency $ u_p^S$ is positioned between 10$^{12.5}$ and 10$^{14.5}$ Hz in broad-lined FSRQs and between $10^{13}$ and $10^{17}$ Hz in featureless BL Lacertae objects.We find that the gamma-ray spectral slope is strongly correlated with the synchrotron peak energy and with the X-ray spectral index, as expected at first order in synchrotron - inverse Compton scenarios. However, simple homogeneous, one-zone, Synchrotron Self Compton (SSC) models cannot explain most of our SEDs, especially in the case of FSRQs and low energy peaked (LBL) BL Lacs. (...)
The F-GAMMA program is a coordinated effort to investigate the physics of Active Galactic Nuclei (AGNs) via multi-frequency monitoring of Fermi blazars. In the current study we show and discuss the evolution of broad-band radio spectra, which are mea sured at ten frequencies between 2.64 and 142 GHz using the Effelsberg 100-m and the IRAM 30-m telescopes. It is shown that any of the 78 sources studied can be classified in terms of their variability characteristics in merely 5 types of variability. It is argued that these can be attributed to only two classes of variability mechanisms. The first four types are dominated by spectral evolution and can be described by a simple two-component system composed of: (a) a steep quiescent spectral component from a large scale jet and (b) a time evolving flare component following the Shock-in-Jet evolutionary path. The fifth type is characterised by an achromatic change of the broad band spectrum, which could be attributed to a different mechanism, likely involving differential Doppler boosting caused by geometrical effects. Here we present the classification, the assumed physical scenario and the results of calculations that have been performed for the spectral evolution of flares.
The GeV break in spectra of the blazar 3C 454.3 is a special observation feature that has been discovered by the {it Fermi}-LAT. The origin of the GeV break in the spectra is still under debate. In order to explore the possible source of GeV spectral break in 3C 454.3, a one-zone homogeneous leptonic jet model, as well as the {it McFit} technique are utilized for fitting the quasi-simultaneous multi-waveband spectral energy distribution (SED) of 3C 454.3. The outside border of the broad-line region (BLR) and inner dust torus are chosen to contribute radiation in the model as external, seed photons to the external-Compton process, considering the observed $gamma$-ray radiation. The combination of two components, namely the Compton-scattered BLR and dust torus radiation, assuming a broken power-law distribution of emitted particles, provides a proper fitting to the multi-waveband SED of 3C 454.3 detected 2008 Aug 3 - Sept 2 and explains the GeV spectral break. We propose that the spectral break of 3C 454.3 may originate from an inherent break in the energy distribution of the emitted particles and the Klein-Nishina effect. A comparison is performed between the energy density of the external photon field for the whole BLR $U_{rm BLR}$ achieved via model fitting and that constrained from the BLR data. The distance from the position of the $gamma$-ray radiation area of 3C 454.3 to the central black hole could be constrained at $sim 0.78$pc ($sim 4.00 R_{rm BLR}$, the size of the BLR).
81 - J. Singal 2015
We present a determination of the distributions of gamma-ray photon flux -- the so called LogN-LogS relation -- and photon spectral index for blazars, based on the third extragalactic source catalog of the Fermi Gamma-ray Space Telescopes Large Area Telescope, and considering the photon energy range from 100 MeV to 100 GeV. The dataset consists of the 774 blazars in the so-called Clean sample detected with a greater than approximately seven sigma detection threshold and located above $pm$20 deg Galactic latitude. We use non-parametric methods verified in previous works to reconstruct the intrinsic distributions from the observed ones which account for the data truncations introduced by observational bias and includes the effects of the possible correlation between the flux and photon index. The intrinsic flux distribution can be represented by a broken power law with a high flux power-law index of -2.43$pm$0.08 and a low flux power-law index of -1.87$pm$0.10. The intrinsic photon index distribution can be represented by a Gaussian with mean of 2.62$pm$0.05 and width of 0.17$pm$0.02. We also report the intrinsic distributions for the sub-populations of BL Lac and FSRQ type blazars separately and these differ substantially. We then estimate the contribution of FSRQs and BL Lacs to the diffuse extragalactic gamma-ray background radiation. Under the simplistic assumption that the flux distributions probed in this analysis continue to arbitrary low flux, we calculate that the best fit contribution of FSRQs is 35% and BL Lacs 17% of the total gamma-ray output of the Universe in this energy range.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا