ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement of Galaxy Clustering at z~7.2 and the Evolution of Galaxy Bias from 3.8<z<8 in the XDF, GOODS-S AND GOODS-N

130   0   0.0 ( 0 )
 نشر من قبل Robert Barone-Nugent
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Lyman-Break Galaxy (LBG) samples observed during reionization ($zgtrsim6$) with Hubble Space Telescopes Wide Field Camera 3 are reaching sizes sufficient to characterize their clustering properties. Using a combined catalog from the Hubble eXtreme Deep Field and CANDELS surveys, containing $N=743$ LBG candidates at z>6.5 at a mean redshift of $z=7.2$, we detect a clear clustering signal in the angular correlation function (ACF) at $sim4sigma$, corresponding to a real-space correlation length $r_{0}=6.7^{+0.9}_{-1.0}h^{-1}$cMpc. The derived galaxy bias $b=8.6^{+0.9}_{-1.0}$ is that of dark-matter halos of $M=10^{11.1^{+0.2}_{-0.3}}$M$_{odot}$ at $z=7.2$, and highlights that galaxies below the current detection limit ($M_{AB}sim-17.7$) are expected in lower-mass halos ($Msim10^{8}-10^{10.5}$M$_{odot}$). We compute the ACF of LBGs at $zsim3.8-zsim5.9$ in the same surveys. A trend of increasing bias is found from $z=3.8$ ($bsim3.0$) to $z=7.2$ ($bsim8.6$), broadly consistent with galaxies at fixed luminosity being hosted in dark-matter halos of similar mass at $4<z<6$, followed by a slight rise in halo masses at $zsim7$ ($sim2sigma$ confidence). Separating the data at the median luminosity of the $z=7.2$ sample ($M_{UV}=-19.4$) shows higher clustering at $z=5.9$ for bright galaxies ($r_{0}=5.5^{+1.4}_{-1.5}h^{-1}$cMpc, $b=6.2^{+1.2}_{-1.5}$) compared to faint galaxies ($r_{0}=1.9^{+1.1}_{-1.0}h^{-1}$cMpc, $b=2.7pm1.2$) implying a constant mass-to-light ratio $frac{dlogM}{dlogL}sim1.2^{+1.8}_{-0.8}$. A similar trend is present in the $z=7.2$ sample with larger uncertainty. Finally, our bias measurements allow us to investigate the fraction of dark-matter halos hosting UV-bright galaxies (the duty-cycle, $epsilon_{DC}$). At $z=7.2$ values near unity are preferred, which may be explained by the shortened halo assembly time at high-redshift.



قيم البحث

اقرأ أيضاً

We use ~88 arcmin**2 of deep (>~26.5 mag at 5 sigma) NICMOS data over the two GOODS fields and the HDF South to conduct a search for bright z>~7 galaxy candidates. This search takes advantage of an efficient preselection over 58 arcmin**2 of NICMOS H -band data where only plausible z>~7 candidates are followed up with NICMOS J-band observations. ~248 arcmin**2 of deep ground-based near-infrared data (>~25.5 mag, 5 sigma) is also considered in the search. In total, we report 15 z-dropout candidates over this area -- 7 of which are new to these search fields. Two possible z~9 J-dropout candidates are also found, but seem unlikely to correspond to z~9 galaxies. The present z~9 search is used to set upper limits on the prevalence of such sources. Rigorous testing is undertaken to establish the level of contamination of our selections by photometric scatter, low mass stars, supernovae (SNe), and spurious sources. The estimated contamination rate of our z~7 selection is ~24%. Through careful simulations, the effective volume available to our z>~7 selections is estimated and used to establish constraints on the volume density of luminous (L*(z=3), or -21 mag) galaxies from these searches. We find that the volume density of luminous star-forming galaxies at z~7 is 13_{-5}^{+8}x lower than at z~4 and >25x lower (1 sigma) at z~9 than at z~4. This is the most stringent constraint yet available on the volume density of >~L* galaxies at z~9. The present wide-area, multi-field search limits cosmic variance to <20%. The evolution we find at the bright end of the UV LF is similar to that found from recent Subaru Suprime-Cam, HAWK-I or ERS WFC3/IR searches. The present paper also includes a complete summary of our final z~7 z-dropout sample (18 candidates) identified from all NICMOS observations to date (over the two GOODS fields, the HUDF, galaxy clusters).
The evolution of the number density of galaxies in the universe, and thus also the total number of galaxies, is a fundamental question with implications for a host of astrophysical problems including galaxy evolution and cosmology. However there has never been a detailed study of this important measurement, nor a clear path to answer it. To address this we use observed galaxy stellar mass functions up to $zsim8$ to determine how the number densities of galaxies changes as a function of time and mass limit. We show that the increase in the total number density of galaxies ($phi_{rm T}$), more massive than M$_{*} = 10^{6}$ M_0, decreases as $phi_{rm T} sim t^{-1}$, where $t$ is the age of the universe. We further show that this evolution turns-over and rather increases with time at higher mass lower limits of M$_{*}>10^{7}$ M_0. By using the M$_{*}=10^{6}$ M_0 lower limit we further show that the total number of galaxies in the universe up to $z = 8$ is $2.0^{+0.7}_{-0.6} times 10^{12}$ (two trillion), almost a factor of ten higher than would be seen in an all sky survey at Hubble Ultra-Deep Field depth. We discuss the implications for these results for galaxy evolution, as well as compare our results with the latest models of galaxy formation. These results also reveal that the cosmic background light in the optical and near-infrared likely arise from these unobserved faint galaxies. We also show how these results solve the question of why the sky at night is dark, otherwise known as Olbers paradox.
We utilize deep near-infrared survey data from the UltraVISTA fourth data release (DR4) and the VIDEO survey, in combination with overlapping optical and Spitzer data, to search for bright star-forming galaxies at $z gtrsim 7.5$. Using a full photome tric redshift fitting analysis applied to the $sim 6,{rm deg}^2$ of imaging searched, we find 27 Lyman-break galaxies (LBGs), including 20 new sources, with best-fitting photometric redshifts in the range $7.4 < z < 9.1$. From this sample we derive the rest-frame UV luminosity function (LF) at $z = 8$ and $z = 9$ out to extremely bright UV magnitudes ($M_{rm UV} simeq -23$) for the first time. We find an excess in the number density of bright galaxies in comparison to the typically assumed Schechter functional form derived from fainter samples. Combined with previous studies at lower redshift, our results show that there is little evolution in the number density of very bright ($M_{rm UV} sim -23$) LBGs between $z simeq 5$ and $zsimeq 9$. The tentative detection of an LBG with best-fit photometric redshift of $z = 10.9 pm 1.0$ in our data is consistent with the derived evolution. We show that a double power-law fit with a brightening characteristic magnitude ($Delta M^*/Delta z simeq -0.5$) and a steadily steepening bright-end slope ($Delta beta/Delta z simeq -0.5$) provides a good description of the $z > 5$ data over a wide range in absolute UV magnitude ($-23 < M_{rm UV} < -17$). We postulate that the observed evolution can be explained by a lack of mass quenching at very high redshifts in combination with increasing dust obscuration within the first $sim 1 ,{rm Gyr}$ of galaxy evolution.
We investigate the star formation histories (SFHs) of high redshift (3 <~ z <~ 5) star-forming galaxies selected based on their rest-frame ultraviolet (UV) colors in the CANDELS/GOODS-S field. By comparing the results from the spectral-energy-distrib ution-fitting analysis with two different assumptions about the SFHs --- i.e., exponentially declining SFHs as well as increasing ones, we conclude that the SFHs of high-redshift star-forming galaxies increase with time rather than exponentially decline. We also examine the correlations between the star formation rates (SFRs) and the stellar masses. When the galaxies are fit with rising SFRs, we find that the trend seen in the data qualitatively matches the expectations from a semi-analytic model of galaxy formation. The mean specific SFR is shown to increase with redshift, also in agreement with the theoretical prediction. From the derived tight correlation between stellar masses and SFRs, we derive the mean SFH of star-forming galaxies in the redshift range of 3 <~ z <~ 5, which shows a steep power-law (with power alpha = 5.85) increase with time. We also investigate the formation timescales and the mean stellar population ages of these star-forming galaxies. Our analysis reveals that UV-selected star-forming galaxies have a broad range of the formation redshift. The derived stellar masses and the stellar population ages show positive correlation in a sense that more massive galaxies are on average older, but with significant scatter. This large scatter implies that the galaxies mass is not the only factor which affects the growth or star formation of high-redshift galaxies.
The galaxy stellar mass function (GSMF) at high-z provides key information on star-formation history and mass assembly in the young Universe. We aimed to use the unique combination of deep optical/NIR/MIR imaging provided by HST, Spitzer and the VLT in the CANDELS-UDS, GOODS-South, and HUDF fields to determine the GSMF over the redshift range 3.5<z<7.5. We utilised the HST WFC3/IR NIR imaging from CANDELS and HUDF09, reaching H~27-28.5 over a total area of 369 arcmin2, in combination with associated deep HST ACS optical data, deep Spitzer IRAC imaging from the SEDS programme, and deep Y and K-band VLT Hawk-I images from the HUGS programme, to select a galaxy sample with high-quality photometric redshifts. These have been calibrated with more than 150 spectroscopic redshifts in the range 3.5<z<7.5, resulting in an overall precision of sigma_z/(1+z)~0.037. We have determined the low-mass end of the high-z GSMF with unprecedented precision, reaching down to masses as low as M*~10^9 Msun at z=4 and ~6x10^9 Msun at z=7. We find that the GSMF at 3.5<z<7.5 depends only slightly on the recipes adopted to measure the stellar masses, namely the photo-z, the SFHs, the nebular contribution or the presence of AGN on the parent sample. The low-mass end of the GSMF is steeper than has been found at lower redshifts, but appears to be unchanged over the redshift range probed here. Our results are very different from previous GSMF estimates based on converting UV galaxy luminosity functions into mass functions via tight M/L relations. Integrating our evolving GSMF over mass, we find that the growth of stellar mass density is barely consistent with the time-integral of the SFR density over cosmic time at z>4. These results confirm the unique synergy of the CANDELS+HUDF, HUGS, and SEDS surveys for the discovery and study of moderate/low-mass galaxies at high redshifts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا