ترغب بنشر مسار تعليمي؟ اضغط هنا

Angular distribution in two-particle emission induced by neutrinos and electrons

218   0   0.0 ( 0 )
 نشر من قبل Jose Amaro E
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The angular distribution of the phase space arising in two-particle emission reactions induced by electrons and neutrinos is computed in the laboratory (Lab) system by boosting the isotropic distribution in the center of mass (CM) system used in Monte Carlo generators. The Lab distribution has a singularity for some angular values, coming from the Jacobian of the angular transformation between CM and Lab systems. We recover the formula we obtained in a previous calculation for the Lab angular distribution. This is in accordance with the Monte Carlo method used to generate two-particle events for neutrino scatteringcite{Sob12}. Inversely, by performing the transformation to the CM system, it can be shown that the phase-space function, which is proportional to the two particle-two hole (2p-2h) hadronic tensor for a constant current operator, can be computed analytically in the frozen nucleon approximation, if Pauli blocking is absent. The results in the CM frame confirm our previous work done using an alternative approach in the Lab frame. The possibilities of using this method to compute the hadronic tensor by a boost to the CM system are analyzed.



قيم البحث

اقرأ أيضاً

Two-particle two-hole contributions to electromagnetic response functions are computed in a fully relativistic Fermi gas model. All one-pion exchange diagrams that contribute to the scattering amplitude in perturbation theory are considered, includin g terms for pionic correlations and meson-exchange currents (MEC). The pionic correlation terms diverge in an infinite system and thus are regularized by modification of the nucleon propagator in the medium to take into account the finite size of the nucleus. The pionic correlation contributions are found to be of the same order of magnitude as the MEC.
Two-particle two-hole contributions to electroweak response functions are computed in a fully relativistic Fermi gas, assuming that the electroweak current matrix elements are independent of the kinematics. We analyze the genuine kinematical and rela tivistic effects before including a realistic meson-exchange current (MEC) operator. This allows one to study the mathematical properties of the non-trivial seven-dimensional integrals appearing in the calculation and to design an optimal numerical procedure to reduce the computation time. This is required for practical applications to CC neutrino scattering experiments, where an additional integral over the neutrino flux is performed. Finally we examine the viability of this model to compute the electroweak 2p-2h response functions.
We study the real-time evolution of an electron influenced by intense electromagnetic fields using the time-dependent basis light-front quantization (tBLFQ) framework. We focus on demonstrating the non-perturbative feature of the tBLFQ approach throu gh a realistic application of the strong coupling QED problem, in which the electromagnetic fields are generated by an ultra-relativistic nucleus. We calculate transitions of an electron influenced by such electromagnetic fields and we show agreement with light-front perturbation theory when the atomic number of the nucleus is small. We compare tBLFQ simulations with perturbative calculations for nuclei with different atomic numbers, and obtain the significant higher-order contributions for heavy nuclei. The simulated real-time evolution of the momentum distribution of an electron evolving inside the strong electromagnetic fields exhibits significant non-perturbative corrections comparing to light-front perturbation theory calculations. The formalism used in this investigation can be extended to QCD problems in heavy ion collisions and electron ion collisions.
We study the medium-induced gluon emission from a hard quark jet traversing the dense nuclear matter within the framework of deep inelastic scattering off a large nucleus. We extend the previous work and compute the single gluon emission spectrum inc luding both transverse and longitudinal momentum exchanges between the hard jet parton and the medium constituents. On the other hand, with only transverse scattering and using static scattering centers for the traversed medium, our induced gluon emission spectrum in the soft gluon limit reduces to the Gyulassy-Levai-Vitev one-rescattering-one-emission formula.
In this paper a role of many-nucleon dynamics in formation of the compound $^{5}{rm Li}$ nucleus in the scattering of protons off $alpha$-particles at the proton incident energies up to 20 MeV is investigated. We propose a bremsstrahlung model allowi ng to extract information about probabilities of formation of such nucleus on the basis of analysis of experimental cross-sections of the bremsstrahlung photons. In order to realize this approach, the model includes elements of microscopic theory and also probabilities of formation of the short-lived compound nucleus. Results of calculations of the bremsstrahlung spectra are in good agreement with the experimental cross-sections.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا