ﻻ يوجد ملخص باللغة العربية
Electronic interactions in multiorbital systems lead to non-trivial features in the optical spectrum. In iron superconductors the Drude weight is strongly suppressed with hole-doping. We discuss why the common association of the renormalization of the Drude weight with that of the kinetic energy, used in single band systems, does not hold in multi-orbital systems. This applies even in a Fermi liquid description when each orbital is renormalized differently, as it happens in iron superconductors. We estimate the contribution of interband transitions at low energies. We show that this contribution is strongly enhanced by interactions and dominates the coherent part of the spectral weight in hole-doped samples at frequencies currently used to determine the Drude weight.
Minimum model calculations on the co-action of hole vanishing Lifshitz transitions and correlation effects in ferropnictides are presented. The calculations predict non-Fermi-liquid behaviour and huge mass enhancements of the charge carriers at the F
In this tutorial we will tackle the problem of electronic correlations in quasi-one-dimensional organic superconductors. We will go through different pieces of experimental evidence showing the range of applicability of the Fermi and Luttinger liquid
We study hydrogen doping effects in an iron-based superconductor LaFeAsO_(1-y) by using the first-principles calculation and explore the reason why the superconducting transition temperature is remarkably enhanced by the hydrogen doping. The present
The electronic band structure of bulk ferromagnetic iron is explored by angle-resolved photoemission for electron correlation effects. Fermi surface cross-sections as well as band maps are contrasted with density functional calculations. The Fermi ve
A theory of the frequency dependence of the interplane conductivity of a strongly anisotropic superconductor is presented. The form of the conductivity is shown to be a sensitive probe of the strength of quantum and thermal fluctuations of the phase