ترغب بنشر مسار تعليمي؟ اضغط هنا

PRAXIS: low thermal emission high efficiency OH suppressed fibre spectrograph

100   0   0.0 ( 0 )
 نشر من قبل Robert Content
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

PRAXIS is a second generation instrument that follows on from GNOSIS, which was the first instrument using fibre Bragg gratings for OH background suppression. The Bragg gratings reflect the NIR OH lines while being transparent to light between the lines. This gives a much higher signal-noise ratio at low resolution but also at higher resolutions by removing the scattered wings of the OH lines. The specifications call for high throughput and very low thermal and detector noise so that PRAXIS will remain sky noise limited. The optical train is made of fore-optics, an IFU, a fibre bundle, the Bragg grating unit, a second fibre bundle and a spectrograph. GNOSIS used the pre-existing IRIS2 spectrograph while PRAXIS will use a new spectrograph specifically designed for the fibre Bragg grating OH suppression and optimised for 1470 nm to 1700 nm (it can also be used in the 1090 nm to 1260 nm band by changing the grating and refocussing). This results in a significantly higher transmission due to high efficiency coatings, a VPH grating at low incident angle and low absorption glasses. The detector noise will also be lower. Throughout the PRAXIS design special care was taken at every step along the optical path to reduce thermal emission or stop it leaking into the system. This made the spectrograph design challenging because practical constraints required that the detector and the spectrograph enclosures be physically separate by air at ambient temperature. At present, the instrument uses the GNOSIS fibre Bragg grating OH suppression unit. We intend to soon use a new OH suppression unit based on multicore fibre Bragg gratings which will allow increased field of view per fibre. Theoretical calculations show that the gain in interline sky background signal-noise ratio over GNOSIS may very well be as high as 9 with the GNOSIS OH suppression unit and 17 with the multicore fibre OH suppression unit.



قيم البحث

اقرأ أيضاً

Celestially, Positronium (Ps), has only been observed through gamma-ray emission produced by its annihilation. However, in its triplet state, a Ps atom has a mean lifetime long enough for electronic transitions to occur between quantum states. This p roduces a recombination spectrum observable in principle at near IR wavelengths, where angular resolution greatly exceeding that of the gamma-ray observations is possible. However, the background in the NIR is dominated by extremely bright atmospheric hydroxyl (OH) emission lines. In this paper we present the design of a diffraction-limited spectroscopic system using novel photonic components - a photonic lantern, OH Fiber Bragg Grating filters, and a photonic TIGER 2-dimensional pseudo-slit - to observe the Ps Balmer alpha line at 1.3122 microns for the first time.
Ground-based near-infrared astronomy is severely hampered by the forest of atmospheric emission lines resulting from the rovibrational decay of OH molecules in the upper atmosphere. The extreme brightness of these lines, as well as their spatial and temporal variability, makes accurate sky subtraction difficult. Selectively filtering these lines with OH suppression instruments has been a long standing goal for near-infrared spectroscopy. We have shown previously the efficacy of fibre Bragg gratings combined with photonic lanterns for achieving OH suppression. Here we report on PRAXIS, a unique near-infrared spectrograph that is optimised for OH suppression with fibre Bragg gratings. We show for the first time that OH suppression (of any kind) is possible with high overall throughput (18 per cent end-to-end), and provide examples of the relative benefits of OH suppression.
CYCLOPS2 is an upgrade for the UCLES high resolution spectrograph on the Anglo-Australian Telescope, scheduled for commissioning in semester 2012A. By replacing the 5 mirror Coude train with a Cassegrain mounted fibre-based image slicer CYCLOPS2 simu ltaneously provides improved throughput, reduced aperture losses and increased spectral resolution. Sixteen optical fibres collect light from a 5.0 arcsecond^2 area of sky and reformat it into the equivalent of a 0.6 arcsecond wide slit, delivering a spectral resolution of R = 70000 and up to twice as much flux as the standard 1 arcsecond slit of the Coude train. CYCLOPS2 also adds support for simultaneous ThAr wavelength calibration via a dedicated fibre. CYCLOPS2 consists of three main components, the fore-optics unit, fibre bundle and slit unit. The fore optics unit incorporates magnification optics and a lenslet array and is designed to mount to the CURE Cassegrain instrument interface, which provides acquisition, guiding and calibration facilities. The fibre bundle transports the light from the Cassegrain focus to the UCLES spectrograph at Coude and also includes a fibre mode scrambler. The slit unit consists of the fibre slit and relay optics to project an image of the slit onto the entrance aperture of the UCLES spectrograph. CYCLOPS2 builds on experience with the first generation CYCLOPS fibre system, which we also describe in this paper. We present the science case for an image slicing fibre feed for echelle spectroscopy and describe the design of CYCLOPS and CYCLOPS2.
Fibre Multi-Object Spectrograph (FMOS) is the first near-infrared instrument with a wide field of view capable of acquiring spectra simultaneously from up to 400 objects. It has been developed as a common-use instrument for the F/2 prime-focus of the Subaru Telescope. The field coverage of 30 diameter is achieved using a new 3-element corrector optimized in the near-infrared (0.9-1.8um) wavelength range. Due to limited space at the prime-focus, we have had to develop a novel fibre positioner called Echidna together with two OH-airglow suppressed spectrographs. FMOS consists of three subsystems: the prime focus unit for IR, the fibre positioning system/connector units, and the two spectrographs. After full systems integration, FMOS was installed on the telescope in late 2007. Many aspects of performance were checked through various test and engineering observations. In this paper, we present the optical and mechanical components of FMOS and show the results of our on-sky engineering observations to date.
GNOSIS is a prototype astrophotonic instrument that utilizes OH suppression fibres consisting of fibre Bragg gratings and photonic lanterns to suppress the 103 brightest atmospheric emission doublets between 1.47-1.7 microns. GNOSIS was commissioned at the 3.9-meter Anglo-Australian Telescope with the IRIS2 spectrograph to demonstrate the potential of OH suppression fibres, but may be potentially used with any telescope and spectrograph combination. Unlike previous atmospheric suppression techniques GNOSIS suppresses the lines before dispersion and in a manner that depends purely on wavelength. We present the instrument design and report the results of laboratory and on-sky tests from commissioning. While these tests demonstrated high throughput and excellent suppression of the skylines by the OH suppression fibres, surprisingly GNOSIS produced no significant reduction in the interline background and the sensitivity of GNOSIS and IRIS2 is about the same as IRIS2. It is unclear whether the lack of reduction in the interline background is due to physical sources or systematic errors as the observations are detector noise-dominated. OH suppression fibres could potentially impact ground-based astronomy at the level of adaptive optics or greater. However, until a clear reduction in the interline background and the corresponding increasing in sensitivity is demonstrated optimized OH suppression fibres paired with a fibre-fed spectrograph will at least provide a real benefits at low resolving powers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا