ﻻ يوجد ملخص باللغة العربية
We consider variants of the following multi-covering problem with disks. We are given two point sets $Y$ (servers) and $X$ (clients) in the plane, a coverage function $kappa :X rightarrow mathcal{N}$, and a constant $alpha geq 1$. Centered at each server is a single disk whose radius we are free to set. The requirement is that each client $x in X$ be covered by at least $kappa(x)$ of the server disks. The objective function we wish to minimize is the sum of the $alpha$-th powers of the disk radii. We present a polynomial time algorithm for this problem achieving an $O(1)$ approximation.
Given an initial placement of a set of rectangles in the plane, we consider the problem of finding a disjoint placement of the rectangles that minimizes the area of the bounding box and preserves the orthogonal order i.e. maintains the sorted orderin
The problem of vertex guarding a simple polygon was first studied by Subir K. Ghosh (1987), who presented a polynomial-time $O(log n)$-approximation algorithm for placing as few guards as possible at vertices of a simple $n$-gon $P$, such that every
We investigate a variety of problems of finding tours and cycle covers with minimum turn cost. Questions of this type have been studied in the past, with complexity and approximation results as well as open problems dating back to work by Arkin et al
We provide the solution for a fundamental problem of geometric optimization by giving a complete characterization of worst-case optimal disk coverings of rectangles: For any $lambdageq 1$, the critical covering area $A^*(lambda)$ is the minimum value
In the metric multi-cover problem (MMC), we are given two point sets $Y$ (servers) and $X$ (clients) in an arbitrary metric space $(X cup Y, d)$, a positive integer $k$ that represents the coverage demand of each client, and a constant $alpha geq 1$.