ترغب بنشر مسار تعليمي؟ اضغط هنا

PaPy: Parallel and Distributed Data-processing Pipelines in Python

131   0   0.0 ( 0 )
 نشر من قبل Cameron Mura
 تاريخ النشر 2014
والبحث باللغة English




اسأل ChatGPT حول البحث

PaPy, which stands for parallel pipelines in Python, is a highly flexible framework that enables the construction of robust, scalable workflows for either generating or processing voluminous datasets. A workflow is created from user-written Python functions (nodes) connected by pipes (edges) into a directed acyclic graph. These functions are arbitrarily definable, and can make use of any Python modules or external binaries. Given a user-defined topology and collection of input data, functions are composed into nested higher-order maps, which are transparently and robustly evaluated in parallel on a single computer or on remote hosts. Local and remote computational resources can be flexibly pooled and assigned to functional nodes, thereby allowing facile load-balancing and pipeline optimization to maximize computational throughput. Input items are processed by nodes in parallel, and traverse the graph in batches of adjustable size -- a trade-off between lazy-evaluation, parallelism, and memory consumption. The processing of a single item can be parallelized in a scatter/gather scheme. The simplicity and flexibility of distributed workflows using PaPy bridges the gap between desktop -> grid, enabling this new computing paradigm to be leveraged in the processing of large scientific datasets.



قيم البحث

اقرأ أيضاً

70 - Shivam Handa 2020
We present a dataflow model for modelling parallel Unix shell pipelines. To accurately capture the semantics of complex Unix pipelines, the dataflow model is order-aware, i.e., the order in which a node in the dataflow graph consumes inputs from diff erent edges plays a central role in the semantics of the computation and therefore in the resulting parallelization. We use this model to capture the semantics of transformations that exploit data parallelism available in Unix shell computations and prove their correctness. We additionally formalize the translations from the Unix shell to the dataflow model and from the dataflow model back to a parallel shell script. We implement our model and transformations as the compiler and optimization passes of a system parallelizing shell pipelines, and use it to evaluate the speedup achieved on 47 pipelines.
Python has become the de facto language for scientific computing. Programming in Python is highly productive, mainly due to its rich science-oriented software ecosystem built around the NumPy module. As a result, the demand for Python support in High Performance Computing (HPC) has skyrocketed. However, the Python language itself does not necessarily offer high performance. In this work, we present a workflow that retains Pythons high productivity while achieving portable performance across different architectures. The workflows key features are HPC-oriented language extensions and a set of automatic optimizations powered by a data-centric intermediate representation. We show performance results and scaling across CPU, GPU, FPGA, and the Piz Daint supercomputer (up to 23,328 cores), with 2.47x and 3.75x speedups over previous-best solutions, first-ever Xilinx and Intel FPGA results of annotated Python, and up to 93.16% scaling efficiency on 512 nodes.
The last improvements in programming languages, programming models, and frameworks have focused on abstracting the users from many programming issues. Among others, recent programming frameworks include simpler syntax, automatic memory management and garbage collection, which simplifies code re-usage through library packages, and easily configurable tools for deployment. For instance, Python has risen to the top of the list of the programming languages due to the simplicity of its syntax, while still achieving a good performance even being an interpreted language. Moreover, the community has helped to develop a large number of libraries and modules, tuning them to obtain great performance. However, there is still room for improvement when preventing users from dealing directly with distributed and parallel computing issues. This paper proposes and evaluates AutoParallel, a Python module to automatically find an appropriate task-based parallelization of affine loop nests to execute them in parallel in a distributed computing infrastructure. This parallelization can also include the building of data blocks to increase task granularity in order to achieve a good execution performance. Moreover, AutoParallel is based on sequential programming and only contains a small annotation in the form of a Python decorator so that anyone with little programming skills can scale up an application to hundreds of cores.
Data processing pipelines represent an important slice of the astronomical software library that include chains of processes that transform raw data into valuable information via data reduction and analysis. In this work we present Corral, a Python f ramework for astronomical pipeline generation. Corral features a Model-View-Controller design pattern on top of an SQL Relational Database capable of handling: custom data models; processing stages; and communication alerts, and also provides automatic quality and structural metrics based on unit testing. The Model-View-Controller provides concept separation between the user logic and the data models, delivering at the same time multi-processing and distributed computing capabilities. Corral represents an improvement over commonly found data processing pipelines in Astronomy since the design pattern eases the programmer from dealing with processing flow and parallelization issues, allowing them to focus on the specific algorithms needed for the successive data transformations and at the same time provides a broad measure of quality over the created pipeline. Corral and working examples of pipelines that use it are available to the community at https://github.com/toros-astro.
Modern astronomical data processing requires complex software pipelines to process ever growing datasets. For radio astronomy, these pipelines have become so large that they need to be distributed across a computational cluster. This makes it difficu lt to monitor the performance of each pipeline step. To gain insight into the performance of each step, a performance monitoring utility needs to be integrated with the pipeline execution. In this work we have developed such a utility and integrated it with the calibration pipeline of the Low Frequency Array, LOFAR, a leading radio telescope. We tested the tool by running the pipeline on several different compute platforms and collected the performance data. Based on this data, we make well informed recommendations on future hardware and software upgrades. The aim of these upgrades is to accelerate the slowest processing steps for this LOFAR pipeline. The pipeline collector suite is open source and will be incorporated in future LOFAR pipelines to create a performance database for all LOFAR processing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا