ﻻ يوجد ملخص باللغة العربية
Per the fluctuation-dissipation theorem, the information obtained from spin fluctuation studies in thermal equilibrium is necessarily constrained by the systems linear response functions. However, by including weak radiofrequency magnetic fields, we demonstrate that intrinsic and random spin fluctuations even in strictly unpolarized ensembles emph{can} reveal underlying patterns of correlation and coupling beyond linear response, and can be used to study non-equilibrium and even multiphoton coherent spin phenomena. We demonstrate this capability in a classical vapor of $^{41}$K alkali atoms, where spin fluctuations alone directly reveal Rabi splittings, the formation of Mollow triplets and Autler-Townes doublets, ac Zeeman shifts, and even nonlinear multiphoton coherences.
Ramsey spectroscopy has become a powerful technique for probing non-equilibrium dynamics of internal (pseudospin) degrees of freedom of interacting systems. In many theoretical treatments, the key to understanding the dynamics has been to assume the
Spin noise spectroscopy is emerging as a powerful technique for studying the dynamics of various spin systems also beyond their thermal equilibrium and linear response. Here, we study spin fluctuations of room-temperature neutral atoms in a Bell-Bloo
Noise spectroscopy elucidates the fundamental noise sources in spin systems, which is essential to develop spin qubits with long coherence times for quantum information processing, communication, and sensing. But noise spectroscopy typically relies o
Enhanced sensitivity in electromagnetically induced transparency (EIT) can be obtained by the use of noise correlation spectroscopy between the fields involved in the process. Here, we investigate EIT in a cold ($< 1$ mK) rubidium vapor and demonstra
Using the second law of local thermodynamics and the first-order Palatini formalism, we formulate relativistic spin hydrodynamics for quantum field theories with Dirac fermions, such as QED and QCD, in a torsionful curved background. We work in a reg