Two-connected signed graphs with maximum nullity at most two


الملخص بالإنكليزية

A signed graph is a pair $(G,Sigma)$, where $G=(V,E)$ is a graph (in which parallel edges are permitted, but loops are not) with $V={1,ldots,n}$ and $Sigmasubseteq E$. The edges in $Sigma$ are called odd and the other edges of $E$ even. By $S(G,Sigma)$ we denote the set of all symmetric $ntimes n$ matrices $A=[a_{i,j}]$ with $a_{i,j}<0$ if $i$ and $j$ are adjacent and connected by only even edges, $a_{i,j}>0$ if $i$ and $j$ are adjacent and connected by only odd edges, $a_{i,j}in mathbb{R}$ if $i$ and $j$ are connected by both even and odd edges, $a_{i,j}=0$ if $i ot=j$ and $i$ and $j$ are non-adjacent, and $a_{i,i} in mathbb{R}$ for all vertices $i$. The parameters $M(G,Sigma)$ and $xi(G,Sigma)$ of a signed graph $(G,Sigma)$ are the largest nullity of any matrix $Ain S(G,Sigma)$ and the largest nullity of any matrix $Ain S(G,Sigma)$ that has the Strong Arnold Hypothesis, respectively. In a previous paper, we gave a characterization of signed graphs $(G,Sigma)$ with $M(G,Sigma)leq 1$ and of signed graphs with $xi(G,Sigma)leq 1$. In this paper, we characterize the $2$-connected signed graphs $(G,Sigma)$ with $M(G,Sigma)leq 2$ and the $2$-connected signed graphs $(G,Sigma)$ with $xi(G,Sigma)leq 2$.

تحميل البحث