ﻻ يوجد ملخص باللغة العربية
Exciting progress towards spin-based quantum computing has recently been made with qubits realized using nitrogen-vacancy (N-V) centers in diamond and phosphorus atoms in silicon, including the demonstration of long coherence times made possible by the presence of spin-free isotopes of carbon and silicon. However, despite promising single-atom nanotechnologies, there remain substantial challenges in coupling such qubits and addressing them individually. Conversely, lithographically defined quantum dots have an exchange coupling that can be precisely engineered, but strong coupling to noise has severely limited their dephasing times and control fidelities. Here we combine the best aspects of both spin qubit schemes and demonstrate a gate-addressable quantum dot qubit in isotopically engineered silicon with a control fidelity of 99.6%, obtained via Clifford based randomized benchmarking and consistent with that required for fault-tolerant quantum computing. This qubit has orders of magnitude improved coherence times compared with other quantum dot qubits, with T_2* = 120 mus and T_2 = 28 ms. By gate-voltage tuning of the electron g*-factor, we can Stark shift the electron spin resonance (ESR) frequency by more than 3000 times the 2.4 kHz ESR linewidth, providing a direct path to large-scale arrays of addressable high-fidelity qubits that are compatible with existing manufacturing technologies.
Fault-tolerant quantum operation is a key requirement for the development of quantum computing. This has been realized in various solid-state systems including isotopically purified silicon which provides a nuclear spin free environment for the qubit
Recent advances towards spin-based quantum computation have been primarily fuelled by elaborate isolation from noise sources, such as surrounding nuclear spins and spin-electric susceptibility, to extend spin coherence. In the meanwhile, addressable
We present a fault-tolerant semi-global control strategy for universal quantum computers. We show that N-dimensional array of qubits where only (N-1)-dimensional addressing resolution is available is compatible with fault-tolerant universal quantum c
The similarities between gated quantum dots and the transistors in modern microelectronics - in fabrication methods, physical structure, and voltage scales for manipulation - have led to great interest in the development of quantum bits (qubits) in s
Recent progress in quantum information has led to the start of several large national and industrial efforts to build a quantum computer. Researchers are now working to overcome many scientific and technological challenges. The programs biggest obsta