ﻻ يوجد ملخص باللغة العربية
We consider entanglement negativity for two disjoint intervals in 1+1 dimensional CFT in the limit of large central charge. As the two intervals get close, the leading behavior of negativity is given by the logarithm of the conformal block where a set of approximately null descendants appears in the intermediate channel. We compute this quantity numerically and compare with existing analytic methods which provide perturbative expansion in powers of the cross-ratio.
We derive conformal blocks in an inverse spacetime dimension expansion. In this large D limit, the blocks are naturally written in terms of a new combination of conformal cross-ratios. We comment on the implications for the conformal bootstrap at large D.
For conformal field theories in arbitrary dimensions, we introduce a method to derive the conformal blocks corresponding to the exchange of a traceless symmetric tensor appearing in four point functions of operators with spin. Using the embedding spa
We give a simple iterative procedure to compute the classical conformal blocks on the sphere to all order in the modulus.
We consider the four-point correlator of the stress tensor multiplet in ${cal N}=4$ SYM in the limit of large central charge $c sim N^2$. For finite values of $g^2N$ single-trace intermediate operators arise at order $1/c$ and this leads to specific
We compute the conformal blocks associated with scalar-scalar-fermion-fermion 4-point functions in 3D CFTs. Together with the known scalar conformal blocks, our result completes the task of determining the so-called `seed blocks in three dimensions.