ﻻ يوجد ملخص باللغة العربية
This article presents a differential geometrical method for analyzing sequential test procedures. It is based on the primal result on the conformal geometry of statistical manifold developed in Kumon, Takemura and Takeuchi (2011). By introducing curvature-type random variables, the condition is first clarified for a statistical manifold to be an exponential family under an appropriate sequential test procedure. This result is further elaborated for investigating the efficient sequential test in a multidimensional curved exponential family. The theoretical results are numerically examined by using von Mises-Fisher and hyperboloid models.
We present a geometrical method for analyzing sequential estimating procedures. It is based on the design principle of the second-order efficient sequential estimation provided in Okamoto, Amari and Takeuchi (1991). By introducing a dual conformal cu
Here, in this paper it has been considered a sub family of exponential family. Maximum likelihood estimations (MLE) for the parameter of this family, probability density function, and cumulative density function based on a sample and based on lower r
Multidimensional Scaling (MDS) is a classical technique for embedding data in low dimensions, still in widespread use today. Originally introduced in the 1950s, MDS was not designed with high-dimensional data in mind; while it remains popular with da
We study an online multiple testing problem where the hypotheses arrive sequentially in a stream. The test statistics are independent and assumed to have the same distribution under their respective null hypotheses. We investigate two procedures LORD
Multidimensional scaling (MDS) is a popular technique for mapping a finite metric space into a low-dimensional Euclidean space in a way that best preserves pairwise distances. We study a notion of MDS on infinite metric measure spaces, along with its