ﻻ يوجد ملخص باللغة العربية
Xclaim (x-ray core level atomic multiplets) is a graphical interface for the calculation of core-hole spectroscopy and ground state properties within a charge-transfer multiplet model taking into account a many-body hamiltonian with Coulomb, spin-orbit, crystal-field, and hybridization interactions. Using Hartree-Fock estimates for the Coulomb and spin-orbit interactions and ligand field parameters (crystal-field, hybridization and charge-transfer energy) the program can calculate x-ray absorption spectroscopy (XAS), x-ray photoemission spectroscopy (XPS), photoemission spectrospcy (PES) and inverse photoemission (IPES) for d- and f-valence metals and different absorption edges. The program runs in Linux, Windows and MacOS platforms.
While new light sources allow for unprecedented resolution in experiments with X-rays, a theoretical understanding of the scattering cross-section lacks closure. In the particular case of strongly correlated electron systems, numerical techniques are
Most currently used approximations for the one-particle Greens function G in the framework of many-body perturbation theory, such as Hedins GW approximation or the cumulant GW+C approach, are based on a linear response approximation for the screened
We introduce a graphical user interface for constructing arbitrary tensor networks and specifying common operations like contractions or splitting, denoted GuiTeNet. Tensors are represented as nodes with attached legs, corresponding to the ordered di
The relativistic Mott insulator Sr2IrO4 driven by large spin-orbit interaction is known for the Jeff = 1/2 antiferromagnetic state which closely resembles the electronic structure of parent compounds of superconducting cuprates. Here, we report the r
An easily accessible method is presented that permits to calculate spectra involving atomic multiplets relevant to X-ray Absorption Spectroscopy (XAS) and Resonant Inelastic X-ray Scattering (RIXS) experiments. We present specific examples and compar