Ultrafast terahertz spectroscopy accesses the {em dark} excitonic ground state in resonantly-excited (6,5) SWNTs via internal, direct dipole-allowed transitions between lowest lying dark-bright pair state $sim$6 meV. An analytical model reproduces the response which enables quantitative analysis of transient densities of dark excitons and {em e-h} plasma, oscillator strength, transition energy renormalization and dynamics. %excitation-induced renormalization. Non-equilibrium, yet stable, quasi-1D quantum states with dark excitonic correlations rapidly emerge even with increasing off-resonance photoexcitation and experience a unique crossover to complex phase-space filling of %a complex distribution between both dark and bright pair states, different from dense 2D/3D excitons influenced by the thermalization, cooling and ionization to free carriers.