ﻻ يوجد ملخص باللغة العربية
We present a way to combine Vlasov and two-fluid codes for the simulation of a collisionless plasma in large domains while keeping full information of the velocity distribution in localized areas of interest. This is made possible by solving the full Vlasov equation in one region while the remaining area is treated by a 5-moment two-fluid code. In such a treatment, the main challenge of coupling kinetic and fluid descriptions is the interchange of physically correct boundary conditions between the different plasma models. In contrast to other treatments, we do not rely on any specific form of the distribution function, e.g. a Maxwellian type. Instead, we combine an extrapolation of the distribution function and a correction of the moments based on the fluid data. Thus, throughout the simulation both codes provide the necessary boundary conditions for each other. A speed-up factor of around 20 is achieved by using GPUs for the computationally expensive solution of the Vlasov equation and an overall factor of at least 60 using the coupling strategy combined with the GPU computation. The coupled codes were then tested on the GEM reconnection challenge.
Many phenomena in collisionless plasma physics require a kinetic description. The evolution of the phase space density can be modeled by means of the Vlasov equation, which has to be solved numerically in most of the relevant cases. One of the proble
In this paper, our goal is to efficiently solve the Vlasov equation on GPUs. A semi-Lagrangian discontinuous Galerkin scheme is used for the discretization. Such kinetic computations are extremely expensive due to the high-dimensional phase space. Th
Because of the large mass differences between electrons and ions, the heat diffusion in electron-ion plasmas exhibits more complex behavior than simple heat diffusion found in typical gas mixtures. In particular, heat is diffused in two distinct, but
We introduce a deterministic discrete-particle simulation approach, the Linearly-Transformed Particle-In-Cell (LTPIC) method, that employs linear deformations of the particles to reduce the noise traditionally associated with particle schemes. Formal
The particle-in-cell (PIC) method is widely used to model the self-consistent interaction between discrete particles and electromagnetic fields. It has been successfully applied to problems across plasma physics including plasma based acceleration, i