Magnetic and transport properties of Ge(1-x-y)Mn(x)Eu(y)Te crystals with chemical compositions 0.041 < x < 0.092 and 0.010 < y < 0.043 are studied. Ferromagnetic order is observed at 150 < T < 160 K. Aggregation of magnetic ions into clusters is found to be the source of almost constant, composition independent Curie temperatures in our samples. Magnetotransport studies show the presence of both negative (at T < 25 K) and linear positive (for 25<T <200 K) magnetoresistance effects (with amplitudes not exceeding 2%) in the studied alloy. Negative magnetoresistance detected at T < 25 K is found to be due to a tunneling of spin-polarized electrons between ferromagnetic clusters. A linear positive magnetoresistance is identified to be geometrical effect related with the presence of ferromagnetic clusters inside semiconductor matrix. The product of the polarization constant and the inter-grain exchange constant, J_P, varies between about 0.13 meV and 0.99 meV. Strong anomalous Hall effect (AHE) is observed for T < T_C with coefficients R_S independent of temperature. The scaling analysis of the AHE leads to a conclusion that this effect is due to a skew scattering mechanism.