ﻻ يوجد ملخص باللغة العربية
Nanodust grains of a few nanometer in size are produced near the Sun by collisional break-up of larger grains and picked-up by the magnetized solar wind. They have so far been detected at 1 AU by only the two STEREO spacecraft. Here we analyze the spectra measured by the radio and plasma wave instrument onboard Cassini during the cruise phase close to Earth orbit; they exhibit bursty signatures similar to those observed by the same instrument in association to nanodust stream impacts on Cassini near Jupiter. The observed wave level and spectral shape reveal impacts of nanoparticles at about 300 km/s, with an average flux compatible with that observed by the radio and plasma wave instrument onboard STEREO and with the interplanetary flux models.
Current models of Titan ionosphere have difficulties in explaining the observed electron density and/or temperature. In order to get new insights, we re-analyzed the data taken in the ionosphere of Titan by the Cassini Langmuir probe (LP), part of th
The solar system contains solids of all sizes, ranging from km-size bodies to nano-sized particles. Nanograins have been detected in situ in the Earths atmosphere, near cometary and giant planet environments, and more recently in the solar wind at 1
The ionosphere of Titan hosts a complex ion chemistry leading to the formation of organic dust below 1200 km. Current models cannot fully explain the observed electron temperature in this dusty environment. To achieve new insight, we have re-analyzed
The magnetospheric cusps are important sites of the coupling of a magnetosphere with the solar wind. The combination of both ground- and space-based observations at Earth have enabled considerable progress to be made in understanding the terrestrial
Titans ionosphere contains a plethora of hydrocarbons and nitrile cations and anions as measured by the Ion Neutral Mass Spectrometer and Cassini Plasma Spectrometer (CAPS) onboard the Cassini spacecraft. Data from the CAPS Ion Beam Spectrometer (IBS