ترغب بنشر مسار تعليمي؟ اضغط هنا

New statistical results on the optical IDV data of BL Lac S5 0716+714

132   0   0.0 ( 0 )
 نشر من قبل Gabriela Raluca Mocanu
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper reports on the statistical behaviour of the optical IntraDay Variability of BL Lac S5 0716+714. Available IntraDay Variability data in the optical is tested to see whether or not the magnitude is log-normally distributed. It was consistently found that this is not the case. This is in agreement with a previous discussion for data for the same object but in a different observational period. Simultaneously, the spectral slope of the light curves is calculated. The implications of these findings for models which discuss both the location and the source of IntraDay Variability are presented.



قيم البحث

اقرأ أيضاً

We report results from a 1 week multi-wavelength campaign to monitor the BL Lac object S5 0716+714 (on December 9-16, 2009). In the radio bands the source shows rapid (~ (0.5-1.5) day) intra-day variability with peak amplitudes of up to ~ 10 %. The v ariability at 2.8 cm leads by about 1 day the variability at 6 cm and 11 cm. This time lag and more rapid variations suggests an intrinsic contribution to the sources intraday variability at 2.8 cm, while at 6 cm and 11 cm interstellar scintillation (ISS) seems to predominate. Large and quasi-sinusoidal variations of ~ 0.8 mag were detected in the V, R and I-bands. The X-ray data (0.2-10 keV) do not reveal significant variability on a 4 day time scale, favoring reprocessed inverse-Compton over synchrotron radiation in this band. The characteristic variability time scales in radio and optical bands are similar. A quasi-periodic variation (QPO) of 0.9 - 1.1 days in the optical data may be present, but if so it is marginal and limited to 2.2 cycles. Cross-correlations between radio and optical are discussed. The lack of a strong radio-optical correlation indicates different physical causes of variability (ISS at long radio wavelengths, source intrinsic origin in the optical), and is consistent with a high jet opacity and a compact synchrotron component peaking at ~= 100 GHz in an ongoing very prominent flux density outburst. For the campaign period, we construct a quasi-simultaneous spectral energy distribution (SED), including gamma-ray data from the FERMI satellite. We obtain lower limits for the relativistic Doppler-boosting of delta >= 12-26, which for a BL,Lac type object, is remarkably high.
BL Lac objects of the intermediate subclass (IBLs) are known to emit a substantial fraction of their power in the energy range 0.1--10 GeV. Detecting gamma-ray emission from such sources provides therefore a direct probe of the emission mechanisms an d of the underlying powerhouse. The AGILE gamma-ray satellite detected the remarkable IBL S5 0716+714 (z simeq 0.3) during a high state in the period from 2007 September - October, marked by two very intense flares reaching peak fluxes of 200times10^{-8} ph / cm^2 s above 100 MeV, with simultaneous optical and X-ray observations. We present here a theoretical model for the two major flares and discuss the overall energetics of the source. We conclude that 0716+714 is among the brightest BL Lacs ever detected at gamma-ray energies. Because of its high power and lack of signs for ongoing accretion or surrounding gas, the source is an ideal candidate to test the maximal power extractable from a rotating supermassive black hole via the pure Blandford-Znajek (BZ) mechanism. We find that during the 2007 gamma-ray flares our source approached or just exceeded the upper limit set by BZ for a black hole of mass 10^9 M_sun
Using the 1.56m telescope at the Shanghai Observatory (ShAO), China, we monitored two sources, BL Lac object S5 0716+714 and Flat Spectrum Radio Quasar (FSRQ) 3C 273. For S5 0716+714, we report 4969 sets of CCD (Charge-coupled Device) photometrical o ptical observations (1369 for V band, 1861 for R band and 1739 for I band) in the monitoring time from Dec.4, 2000 to Apr.5, 2014. For 3C 273, we report 460 observations (138 for V band, 146 for R band and 176 for I band) in the monitoring time from Mar. 28, 2006 to Apr. 9, 2014. The observations provide us with a large amount of data to analyze the short-term and long-term optical variabilities. Based on the variable timescales, we can estimate the central black hole mass and the Doppler factor. An abundance of multi-band observations can help us to analyze the relations between the brightness and spectrum. We use Gaussian fitting to analyze the intra-day light curves and obtain the intra-day variability (IDV) timescales. We use the discrete correlation function (DCF) method and Jurkevich method to analyze the quasi-periodic variability. Based on the VRI observations, we use the linear fitting to analyze the relations between brightness and spectrum. The two sources both show IDV properties for S5 0716+714. The timescales are in the range from 17.3 minutes to 4.82 hours; for 3C273, the timescale is 35.6 minutes. Based on the periodic analysis methods, we find the periods P(V) = 24.24 days, P(R)=24.12 days, P(I)=24.82 days for S5 0716+714, and P = 12.99, 21.76 yr for 3C273. The two sources displayed the bluer-when-brighter spectral evolution properties. S5 0716+714 and 3C 273 are frequently studied objects. The violent optical variability and IDV may come from the jet. Gaussian fitting can be used to analyze IDVs. The relations between brightness (flux density) and spectrum are strongly influenced by the frequency.
117 - Sunil Chandra 2015
We present a detailed investigation of the flaring activity observed from a BL Lac object, S5 0716+714 , during its brightest ever optical state in the second half of January 2015. Observed almost simultaneously in the optical, X-rays and {gamma}-ray s, a significant change in the degree of optical polarization (PD) and a swing in the position angle (PA) of polarization were recorded. A detection in the TeV (VHE) was also reported by the MAGIC consortium during this flaring episode. Two prominent sub-flares, peaking about 5-days apart, were seen in almost all the energy bands. The multi-wavelength light-curves, spectral energy distribution (SED) and polarization are modeled using the time-dependent code developed by Zhang et al. (2014). This model assumes a straight jet threaded by large scale helical magnetic fields taking into account the light travel time effects, incorporating synchrotron flux and polarization in 3D geometry. The rapid variation in PD and rotation in PA are most likely due to re-connections happening in the emission region in the jet, as suggested by the change in the ratio of toroidal to poloidal components of magnetic field during quiescent and flaring states.
We examine the 2008-2016 $gamma$-ray and optical light curves of three bright BL Lac objects, 0716+714, MRK 421, BL Lac, which exhibit large structured variability. We searched for periodicities by using a fully Bayesian approach. For two out of thre e sources investigated no significant periodic variability was found. In the case of BL Lac we detected a periodicity of ~ 680 days. Although the signal related to this is modest, the coincidence of the periods in both gamma and optical bands is indicative of a physical relevance. Considering previous literature results, possibly related $gamma$-ray and optical periodicities of about one year time scale are proposed in 4 bright $gamma$-ray blazars out of the 10 examined in detail. Comparing with results from periodicity search of optical archives of quasars, the presence of quasi-periodicities in blazars might be more frequent by a large factor. This suggests the intriguing possibility that the basic conditions for their observability are related to the relativistic jet in the observer direction, but the overall picture remains uncertain.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا