We conduct a joint X-ray and weak-lensing study of four relaxed galaxy clusters (Hydra A, A478, A1689 and A1835) observed by both Suzaku and Subaru out to virial radii, with an aim to understand recently-discovered unexpected feature of the ICM in cluster outskirts. We show that the average hydrostatic-to-lensing total mass ratio for the four clusters decreases from sim 70% to sim 40% as the overdensity contrast decreases from 500 to the virial value.The average gas mass fraction from lensing total mass estimates increases with cluster radius and agrees with the cosmic mean baryon fraction within the virial radius, whereas the X-ray-based gas fraction considerably exceeds the cosmic values due to underestimation of the hydrostatic mass. We also develop a new advanced method for determining normalized cluster radial profiles for multiple X-ray observables by simultaneously taking into account both their radial dependence and multivariate scaling relations with weak-lensing masses. Although the four clusters span a range of halo mass, concentration, X-ray luminosity and redshift, we find that the gas entropy, pressure, temperature and density profiles are all remarkably self-similar when scaled with the lensing M_200 mass and r_200 radius.The entropy monotonically increases out to sim 0.5r_200 following the accretion shock heating model K(r)propto r^1.1, and flattens at simgt 0.5r_200.The universality of the scaled entropy profiles indicates that the thermalization mechanism over the entire cluster region (>0.1r_200) is controlled by gravitation in a common to all clusters, although the heating efficiency in the outskirts needs to be modified from the standard law.The bivariate scaling functions of the gas density and temperature reveal that the flattening of the outskirts entropy profile is caused by the steepening of the temperature, rather than the flattening of the gas density.