ترغب بنشر مسار تعليمي؟ اضغط هنا

Mobile linkers on DNA-coated colloids: valency without patches

245   0   0.0 ( 0 )
 نشر من قبل Stefano Angioletti-Uberti
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Colloids coated with single-stranded DNA (ssDNA) can bind selectively to other colloids coated with complementary ssDNA. The fact that DNA-coated colloids (DNACCs) can bind to specific partners opens the prospect of making colloidal `molecules. However, in order to design DNACC-based molecules, we must be able to control the valency of the colloids, i.e. the number of partners to which a given DNACC can bind. One obvious, but not very simple approach is to decorate the colloidal surface with patches of single-stranded DNA that selectively bind those on other colloids. Here we propose a design principle that exploits many-body effects to control the valency of otherwise isotropic colloids. Using a combination of theory and simulation, we show that we can tune the valency of colloids coated with mobile ssDNA, simply by tuning the non-specific repulsion between the particles. Our simulations show that the resulting effective interactions lead to low-valency colloids self-assembling in peculiar open structures, very different from those observed in DNACCs with immobile DNA linkers.



قيم البحث

اقرأ أيضاً

We construct a theoretical model for the dynamics of a microscale colloidal particle, modeled as an interval, moving horizontally on a DNA-coated surface, modelled as a line coated with springs that can stick to the interval. Averaging over the fast DNA dynamics leads to an evolution equation for the particle in isolation, which contains both friction and diffusion. The DNA-induced friction coefficient depends on the physical properties of the DNA, and substituting parameter values typical of a 1$mu$m colloid coated densely with weakly interacting DNA gives a coefficient about 100 times larger than the corresponding coefficient of hydrodynamic friction. We use a mean-field extension of the model to higher dimensions to estimate the friction tensor for a disc rotating and translating horizontally along a line. When the DNA strands are very stiff and short, the friction coefficient for the disc rolling approaches zero while the friction for the disc sliding remains large. Together, these results could have significant implications for the dynamics of DNA-coated colloids or other ligand-receptor systems, implying that DNA-induced friction between colloids can be stronger than hydrodynamic friction and should be incorporated into simulations, and that it depends nontrivially on the type of relative motion, possibly causing the particles to assemble into out-of-equilibrium metastable states governed by the pathways with the least friction.
Genomic expression depends critically both on the ability of regulatory proteins to locate specific target sites on a DNA within seconds and on the formation of long lived (many minutes) complexes between these proteins and the DNA. Equilibrium exper iments show that indeed regulatory proteins bind tightly to their target site. However, they also find strong binding to other non-specific sites which act as traps that can dramatically increase the time needed to locate the target. This gives rise to a conflict between the speed and stability requirements. Here we suggest a simple mechanism which can resolve this long-standing paradox by allowing the target sites to be located by proteins within short time scales even in the presence of traps. Our theoretical analysis shows that the mechanism is robust in the presence of generic disorder in the DNA sequence and does not require a specially designed target site.
In this paper we study a system of entangled chains that bear reversible cross-links in a melt state. The cross-links are tethered uniformly on the backbone of each chain. A slip-link type model for the system is presented and solved for the relaxati on modulus. The effects of entanglements and reversible cross-linkers are modelled as discrete form of constraints that influence the motion of the primitive path. In contrast to a non-associating entangled system the model calculations demonstrate that the elastic modulus has a much higher first plateau and a delayed terminal relaxation. These effects are attributed to the evolution of the entangled chains as influenced by tethered reversible linkers. The model is solved for the case when linker survival time $tau_s$ is greater than the entanglement time $tau_e$ but less than the Rouse time $tau_R$.
We study the percolation properties for a system of functionalized colloids on patterned substrates via Monte Carlo simulations. The colloidal particles are modeled as hard disks with three equally-distributed attractive patches on their perimeter. W e describe the patterns on the substrate as circular potential wells of radius $R_p$ arranged in a regular square or hexagonal lattice. We find a nonmonotonic behavior of the percolation threshold (packing fraction) as a function of $R_p$. For attractive wells, the percolation threshold is higher than the one for clean (non-patterned) substrates if the circular wells are non-overlapping and can only be lower if the wells overlap. For repulsive wells we find the opposite behavior. In addition, at high packing fractions the formation of both structural and bond defects suppress percolation. As a result, the percolation diagram is reentrant with the non-percolated state occurring at very low and intermediate densities.
In living cells, proteins combine 3D bulk diffusion and 1D sliding along the DNA to reach a target faster. This process is known as facilitated diffusion, and we investigate its dynamics in the physiologically relevant case of confined DNA. The confi ning geometry and DNA elasticity are key parameters: we find that facilitated diffusion is most efficient inside an isotropic volume, and on a flexible polymer. By considering the typical copy numbers of proteins in vivo, we show that the speedup due to sliding becomes insensitive to fine tuning of parameters, rendering facilitated diffusion a robust mechanism to speed up intracellular diffusion-limited reactions. The parameter range we focus on is relevant for in vitro systems and for facilitated diffusion on yeast chromatin.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا