ﻻ يوجد ملخص باللغة العربية
Human pose estimation is a key step to action recognition. We propose a method of estimating 3D human poses from a single image, which works in conjunction with an existing 2D pose/joint detector. 3D pose estimation is challenging because multiple 3D poses may correspond to the same 2D pose after projection due to the lack of depth information. Moreover, current 2D pose estimators are usually inaccurate which may cause errors in the 3D estimation. We address the challenges in three ways: (i) We represent a 3D pose as a linear combination of a sparse set of bases learned from 3D human skeletons. (ii) We enforce limb length constraints to eliminate anthropomorphically implausible skeletons. (iii) We estimate a 3D pose by minimizing the $L_1$-norm error between the projection of the 3D pose and the corresponding 2D detection. The $L_1$-norm loss term is robust to inaccurate 2D joint estimations. We use the alternating direction method (ADM) to solve the optimization problem efficiently. Our approach outperforms the state-of-the-arts on three benchmark datasets.
We propose a Transformer-based framework for 3D human texture estimation from a single image. The proposed Transformer is able to effectively exploit the global information of the input image, overcoming the limitations of existing methods that are s
In this work we address the challenging problem of 3D human pose estimation from single images. Recent approaches learn deep neural networks to regress 3D pose directly from images. One major challenge for such methods, however, is the collection of
We propose DeepHuman, an image-guided volume-to-volume translation CNN for 3D human reconstruction from a single RGB image. To reduce the ambiguities associated with the surface geometry reconstruction, even for the reconstruction of invisible areas,
Recovering 3D human pose from 2D joints is still a challenging problem, especially without any 3D annotation, video information, or multi-view information. In this paper, we present an unsupervised GAN-based model consisting of multiple weight-sharin
We propose NormalGAN, a fast adversarial learning-based method to reconstruct the complete and detailed 3D human from a single RGB-D image. Given a single front-view RGB-D image, NormalGAN performs two steps: front-view RGB-D rectification and back-v