ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust Estimation of 3D Human Poses from a Single Image

158   0   0.0 ( 0 )
 نشر من قبل Chunyu Wang
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Human pose estimation is a key step to action recognition. We propose a method of estimating 3D human poses from a single image, which works in conjunction with an existing 2D pose/joint detector. 3D pose estimation is challenging because multiple 3D poses may correspond to the same 2D pose after projection due to the lack of depth information. Moreover, current 2D pose estimators are usually inaccurate which may cause errors in the 3D estimation. We address the challenges in three ways: (i) We represent a 3D pose as a linear combination of a sparse set of bases learned from 3D human skeletons. (ii) We enforce limb length constraints to eliminate anthropomorphically implausible skeletons. (iii) We estimate a 3D pose by minimizing the $L_1$-norm error between the projection of the 3D pose and the corresponding 2D detection. The $L_1$-norm loss term is robust to inaccurate 2D joint estimations. We use the alternating direction method (ADM) to solve the optimization problem efficiently. Our approach outperforms the state-of-the-arts on three benchmark datasets.



قيم البحث

اقرأ أيضاً

We propose a Transformer-based framework for 3D human texture estimation from a single image. The proposed Transformer is able to effectively exploit the global information of the input image, overcoming the limitations of existing methods that are s olely based on convolutional neural networks. In addition, we also propose a mask-fusion strategy to combine the advantages of the RGB-based and texture-flow-based models. We further introduce a part-style loss to help reconstruct high-fidelity colors without introducing unpleasant artifacts. Extensive experiments demonstrate the effectiveness of the proposed method against state-of-the-art 3D human texture estimation approaches both quantitatively and qualitatively.
In this work we address the challenging problem of 3D human pose estimation from single images. Recent approaches learn deep neural networks to regress 3D pose directly from images. One major challenge for such methods, however, is the collection of training data. Specifically, collecting large amounts of training data containing unconstrained images annotated with accurate 3D poses is infeasible. We therefore propose to use two independent training sources. The first source consists of accurate 3D motion capture data, and the second source consists of unconstrained images with annotated 2D poses. To integrate both sources, we propose a dual-source approach that combines 2D pose estimation with efficient 3D pose retrieval. To this end, we first convert the motion capture data into a normalized 2D pose space, and separately learn a 2D pose estimation model from the image data. During inference, we estimate the 2D pose and efficiently retrieve the nearest 3D poses. We then jointly estimate a mapping from the 3D pose space to the image and reconstruct the 3D pose. We provide a comprehensive evaluation of the proposed method and experimentally demonstrate the effectiveness of our approach, even when the skeleton structures of the two sources differ substantially.
386 - Zerong Zheng , Tao Yu , Yixuan Wei 2019
We propose DeepHuman, an image-guided volume-to-volume translation CNN for 3D human reconstruction from a single RGB image. To reduce the ambiguities associated with the surface geometry reconstruction, even for the reconstruction of invisible areas, we propose and leverage a dense semantic representation generated from SMPL model as an additional input. One key feature of our network is that it fuses different scales of image features into the 3D space through volumetric feature transformation, which helps to recover accurate surface geometry. The visible surface details are further refined through a normal refinement network, which can be concatenated with the volume generation network using our proposed volumetric normal projection layer. We also contribute THuman, a 3D real-world human model dataset containing about 7000 models. The network is trained using training data generated from the dataset. Overall, due to the specific design of our network and the diversity in our dataset, our method enables 3D human model estimation given only a single image and outperforms state-of-the-art approaches.
Recovering 3D human pose from 2D joints is still a challenging problem, especially without any 3D annotation, video information, or multi-view information. In this paper, we present an unsupervised GAN-based model consisting of multiple weight-sharin g generators to estimate a 3D human pose from a single image without 3D annotations. In our model, we introduce single-view-multi-angle consistency (SVMAC) to significantly improve the estimation performance. With 2D joint locations as input, our model estimates a 3D pose and a camera simultaneously. During training, the estimated 3D pose is rotated by random angles and the estimated camera projects the rotated 3D poses back to 2D. The 2D reprojections will be fed into weight-sharing generators to estimate the corresponding 3D poses and cameras, which are then mixed to impose SVMAC constraints to self-supervise the training process. The experimental results show that our method outperforms the state-of-the-art unsupervised methods by 2.6% on Human 3.6M and 15.0% on MPI-INF-3DHP. Moreover, qualitative results on MPII and LSP show that our method can generalize well to unknown data.
We propose NormalGAN, a fast adversarial learning-based method to reconstruct the complete and detailed 3D human from a single RGB-D image. Given a single front-view RGB-D image, NormalGAN performs two steps: front-view RGB-D rectification and back-v iew RGBD inference. The final model was then generated by simply combining the front-view and back-view RGB-D information. However, inferring backview RGB-D image with high-quality geometric details and plausible texture is not trivial. Our key observation is: Normal maps generally encode much more information of 3D surface details than RGB and depth images. Therefore, learning geometric details from normal maps is superior than other representations. In NormalGAN, an adversarial learning framework conditioned by normal maps is introduced, which is used to not only improve the front-view depth denoising performance, but also infer the back-view depth image with surprisingly geometric details. Moreover, for texture recovery, we remove shading information from the front-view RGB image based on the refined normal map, which further improves the quality of the back-view color inference. Results and experiments on both testing data set and real captured data demonstrate the superior performance of our approach. Given a consumer RGB-D sensor, NormalGAN can generate the complete and detailed 3D human reconstruction results in 20 fps, which further enables convenient interactive experiences in telepresence, AR/VR and gaming scenarios.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا