ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum group of automorphisms of a finite quantum group

105   0   0.0 ( 0 )
 نشر من قبل Adam Skalski
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A notion of a quantum automorphism group of a finite quantum group, generalising that of a classical automorphism group of a finite group, is proposed and a corresponding existence result proved.



قيم البحث

اقرأ أيضاً

We study the dual relationship between quantum group convolution maps $L^1(mathbb{G})rightarrow L^{infty}(mathbb{G})$ and completely bounded multipliers of $widehat{mathbb{G}}$. For a large class of locally compact quantum groups $mathbb{G}$ we compl etely isomorphically identify the mapping ideal of row Hilbert space factorizable convolution maps with $M_{cb}(L^1(widehat{mathbb{G}}))$, yielding a quantum Gilbert representation for completely bounded multipliers. We also identify the mapping ideals of completely integral and completely nuclear convolution maps, the latter case coinciding with $ell^1(widehat{bmathbb{G}})$, where $bmathbb{G}$ is the quantum Bohr compactification of $mathbb{G}$. For quantum groups whose dual has bounded degree, we show that the completely compact convolution maps coincide with $C(bmathbb{G})$. Our techniques comprise a mixture of operator space theory and abstract harmonic analysis, including Fubini tensor products, the non-commutative Grothendieck inequality, quantum Eberlein compactifications, and a suitable notion of quasi-SIN quantum group, which we introduce and exhibit examples from the bicrossed product construction. Our main results are new even in the setting of group von Neumann algebras $VN(G)$ for quasi-SIN locally compact groups $G$.
Quantum symmetric algebras (or noncommutative polynomial rings) arise in many places in mathematics. In this article we find the multiplicative structure of their Hochschild cohomology when the coefficients are in an arbitrary bimodule algebra. When this bimodule algebra is a finite group extension (under a diagonal action) of a quantum symmetric algebra, we give explicitly the graded vector space structure. This yields a complete description of the Hochschild cohomology ring of the corresponding skew group algebra.
68 - Robert A. Wilson 2021
There are four finite groups that could plausibly play the role of the spin group in a finite or discrete model of quantum mechanics, namely the four double covers of the three rotation groups of the Platonic solids. In an earlier paper I have consid ered in detail how the smallest of these groups, namely the binary tetrahedral group, of order 24, could give rise to a non-relativistic theory that contains much of the structure of the standard model of particle physics. In this paper I consider how one of the two double covers of the rotation group of the cube might extend this to a relativistic theory.
147 - Debashish Goswami 2012
We formulate a definition of isometric action of a compact quantum group (CQG) on a compact metric space, generalizing Banicas definition for finite metric spaces. For metric spaces $(X,d)$ which can be isometrically embedded in some Euclidean space, we prove the existence of a universal object in the category of the compact quantum groups acting isometrically on $(X,d)$. In fact, our existence theorem applies to a larger class, namely for any compact metric space $(X,d)$ which admits a one-to-one continuous map $f : X raro IR^n$ for some $n$ such that $d_0(f(x),f(y))=phi(d(x,y))$ (where $d_0$ is the Euclidean metric) for some homeomorphism $phi$ of $IR^+$. As concrete examples, we obtain Wangs quantum permutation group $cls_n^+$ and also the free wreath product of $IZ_2$ by $cls_n^+$ as the quantum isometry groups for certain compact connected metric spaces constructed by taking topological joins of intervals in cite{huang1}.
Let $mathfrak{g}_0$ be a simple Lie algebra of type ADE and let $U_q(mathfrak{g})$ be the corresponding untwisted quantum affine algebra. We show that there exists an action of the braid group $B(mathfrak{g}_0)$ on the quantum Grothendieck ring $K_t( mathfrak{g})$ of Hernandez-Leclercs category $C_{mathfrak{g}}^0$. Focused on the case of type $A_{N-1}$, we construct a family of monoidal autofunctors ${mathscr{S}_i}_{iin mathbb{Z}}$ on a localization $T_N$ of the category of finite-dimensional graded modules over the quiver Hecke algebra of type $A_{infty}$. Under an isomorphism between the Grothendieck ring $K(T_N)$ of $T_N$ and the quantum Grothendieck ring $K_t({A^{(1)}_{N-1}})$, the functors ${mathscr{S}_i}_{1le ile N-1}$ recover the action of the braid group $B(A_{N-1})$. We investigate further properties of these functors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا