ترغب بنشر مسار تعليمي؟ اضغط هنا

Covariate dimension reduction for survival data via the Gaussian process latent variable model

189   0   0.0 ( 0 )
 نشر من قبل James Barrett
 تاريخ النشر 2014
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

The analysis of high dimensional survival data is challenging, primarily due to the problem of overfitting which occurs when spurious relationships are inferred from data that subsequently fail to exist in test data. Here we propose a novel method of extracting a low dimensional representation of covariates in survival data by combining the popular Gaussian Process Latent Variable Model (GPLVM) with a Weibull Proportional Hazards Model (WPHM). The combined model offers a flexible non-linear probabilistic method of detecting and extracting any intrinsic low dimensional structure from high dimensional data. By reducing the covariate dimension we aim to diminish the risk of overfitting and increase the robustness and accuracy with which we infer relationships between covariates and survival outcomes. In addition, we can simultaneously combine information from multiple data sources by expressing multiple datasets in terms of the same low dimensional space. We present results from several simulation studies that illustrate a reduction in overfitting and an increase in predictive performance, as well as successful detection of intrinsic dimensionality. We provide evidence that it is advantageous to combine dimensionality reduction with survival outcomes rather than performing unsupervised dimensionality reduction on its own. Finally, we use our model to analyse experimental gene expression data and detect and extract a low dimensional representation that allows us to distinguish high and low risk groups with superior accuracy compared to doing regression on the original high dimensional data.



قيم البحث

اقرأ أيضاً

We apply Gaussian process (GP) regression, which provides a powerful non-parametric probabilistic method of relating inputs to outputs, to survival data consisting of time-to-event and covariate measurements. In this context, the covariates are regar ded as the `inputs and the event times are the `outputs. This allows for highly flexible inference of non-linear relationships between covariates and event times. Many existing methods, such as the ubiquitous Cox proportional hazards model, focus primarily on the hazard rate which is typically assumed to take some parametric or semi-parametric form. Our proposed model belongs to the class of accelerated failure time models where we focus on directly characterising the relationship between covariates and event times without any explicit assumptions on what form the hazard rates take. It is straightforward to include various types and combinations of censored and truncated observations. We apply our approach to both simulated and experimental data. We then apply multiple output GP regression, which can handle multiple potentially correlated outputs for each input, to competing risks survival data where multiple event types can occur. By tuning one of the model parameters we can control the extent to which the multiple outputs (the time-to-event for each risk) are dependent thus allowing the specification of correlated risks. Simulation studies suggest that in some cases assuming dependence can lead to more accurate predictions.
104 - Ge Zhao , Yanyuan Ma , Huazhen Lin 2020
We propose a new class of semiparametric regression models of mean residual life for censored outcome data. The models, which enable us to estimate the expected remaining survival time and generalize commonly used mean residual life models, also cond uct covariate dimension reduction. Using the geometric approaches in semiparametrics literature and the martingale properties with survival data, we propose a flexible inference procedure that relaxes the parametric assumptions on the dependence of mean residual life on covariates and how long a patient has lived. We show that the estimators for the covariate effects are root-$n$ consistent, asymptotically normal, and semiparametrically efficient. With the unspecified mean residual life function, we provide a nonparametric estimator for predicting the residual life of a given subject, and establish the root-$n$ consistency and asymptotic normality for this estimator. Numerical experiments are conducted to illustrate the feasibility of the proposed estimators. We apply the method to analyze a national kidney transplantation dataset to further demonstrate the utility of the work.
142 - JaeHoan Kim , Jaeyong Lee 2021
Gaussian process regression (GPR) model is a popular nonparametric regression model. In GPR, features of the regression function such as varying degrees of smoothness and periodicities are modeled through combining various covarinace kernels, which a re supposed to model certain effects. The covariance kernels have unknown parameters which are estimated by the EM-algorithm or Markov Chain Monte Carlo. The estimated parameters are keys to the inference of the features of the regression functions, but identifiability of these parameters has not been investigated. In this paper, we prove identifiability of covariance kernel parameters in two radial basis mixed kernel GPR and radial basis and periodic mixed kernel GPR. We also provide some examples about non-identifiable cases in such mixed kernel GPRs.
We consider the problem of estimating a low-dimensional parameter in high-dimensional linear regression. Constructing an approximately unbiased estimate of the parameter of interest is a crucial step towards performing statistical inference. Several authors suggest to orthogonalize both the variable of interest and the outcome with respect to the nuisance variables, and then regress the residual outcome with respect to the residual variable. This is possible if the covariance structure of the regressors is perfectly known, or is sufficiently structured that it can be estimated accurately from data (e.g., the precision matrix is sufficiently sparse). Here we consider a regime in which the covariate model can only be estimated inaccurately, and hence existing debiasing approaches are not guaranteed to work. When errors in estimating the covariate model are correlated with errors in estimating the linear model parameter, an incomplete elimination of the bias occurs. We propose the Correlation Adjusted Debiased Lasso (CAD), which nearly eliminates this bias in some cases, including cases in which the estimation errors are neither negligible nor orthogonal. We consider a setting in which some unlabeled samples might be available to the statistician alongside labeled ones (semi-supervised learning), and our guarantees hold under the assumption of jointly Gaussian covariates. The new debiased estimator is guaranteed to cancel the bias in two cases: (1) when the total number of samples (labeled and unlabeled) is larger than the number of parameters, or (2) when the covariance of the nuisance (but not the effect of the nuisance on the variable of interest) is known. Neither of these cases is treated by state-of-the-art methods.
Gaussian processes (GP) are widely used as a metamodel for emulating time-consuming computer codes. We focus on problems involving categorical inputs, with a potentially large number L of levels (typically several tens), partitioned in G << L groups of various sizes. Parsimonious covariance functions, or kernels, can then be defined by block covariance matrices T with constant covariances between pairs of blocks and within blocks. We study the positive definiteness of such matrices to encourage their practical use. The hierarchical group/level structure, equivalent to a nested Bayesian linear model, provides a parameterization of valid block matrices T. The same model can then be used when the assumption within blocks is relaxed, giving a flexible parametric family of valid covariance matrices with constant covariances between pairs of blocks. The positive definiteness of T is equivalent to the positive definiteness of a smaller matrix of size G, obtained by averaging each block. The model is applied to a problem in nuclear waste analysis, where one of the categorical inputs is atomic number, which has more than 90 levels.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا