ﻻ يوجد ملخص باللغة العربية
We solve the optimal quantum limit of probing a classical force exactly by a damped oscillator initially prepared in the factorized squeezed state. The memory effects of the thermal bath on the oscillator evolution are investigated. We show that the optimal force sensitivity obtained by the quantum estimation theory approaches to zero for the non-Markovian bath, whereas approaches to a finite non-zero value for the Markovian bath as the energy of the damped oscillator goes to infinity.
The force estimation problem in quantum metrology with an arbitrary non-Markovian Gaussian bath is considered. No assumptions are made on the bath spectrum and coupling strength with the probe. Considering the natural global unitary evolution of both
We study a driven two-state system interacting with a structured environment. We introduce the non-Markovian master equation ruling the system dynamics, and we derive its analytic solution for general reservoir spectra. We compare the non-Markovian d
Time evolution of a harmonic oscillator linearly coupled to a heat bath is compared for three classes of initial states for the bath modes - grand canonical ensemble, number states and coherent states. It is shown that for a wide class of number stat
We analyze the new equation of motion for the damped oscillator. It differs from the standard one by a damping term which is nonlocal in time and hence it gives rise to a system with memory. Both classical and quantum analysis is performed. The chara
We study the analytically solvable Ising model of a single qubit system coupled to a spin bath. The purpose of this study is to analyze and elucidate the performance of Markovian and non-Markovian master equations describing the dynamics of the syste