ترغب بنشر مسار تعليمي؟ اضغط هنا

Evolution of quasiparticle states with and without a Zn-impurity in doped 122 iron pnictides

159   0   0.0 ( 0 )
 نشر من قبل Lihua Pan
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Based on a minimal two-orbital model [Tai {it et al.}, Europhys. Lett. textbf{103}, 67001 (2013)], which captures the canonical electron-hole-doping phase diagram of the iron-pnictide BaFe$_{2}$As$_{2}$, we study the evolution of quasiparticle states as a function of doping using the Bogoliubov-de Gennes equations with and without a single impurity. Analyzing the density of states of uniformly doped samples, we are able to identify the origin of the two superconducting gaps observed in optimally hole- or electron-doped systems. The local density of states (LDOS) is then examined near a single impurity in samples without antiferromagnetic order. The qualitative features of our results near the single impurity are consistent with a work based on a five-orbital model[K. Toshikaze {it et al.}, J. Phys. Soc. Jpn. textbf{79}, 083704 (2010)]. This further supports the validity of our two-orbital model in dealing with LDOS in the single-impurity problem. Finally, we investigate the evolution of the LDOS with doping near a single impurity in the unitary or strong scattering limit, such as Zn replacing Fe. The positions of the ingap resonance peaks exhibited in our LDOS may indirectly reflect the evolution of the Fermi surface topology according to the phase diagram. Our prediction of ingap states and the evolution of the LDOS near a strong scattering single impurity can be validated by experiments probing the local quasiparticle spectrum.



قيم البحث

اقرأ أيضاً

254 - Lihua Pan , Jian Li , Yuan-Yen Tai 2013
Based on the minimum two-orbital model and the phase diagram recently proposed by Tai et al. (Europhys. Lett. textbf{103}, 67001(2013)) for both electron- and hole-doped 122 iron-based superconducting compounds, we use the Bogoliubov-de Gennes equati ons to perform a comprehensive investigation of the evolution of the Fermi surface (FS) topology in the presence of the collinear spin-density-wave (SDW) order as the doping is changed. In the parent compound, the ground state is the SDW order, where the FS is not completely gapped, and two types of Dirac cones, one electron-doped and the other hole-doped emerge in the magnetic Brillouin zone. Our findings are qualitatively consistent with recent angle-resolved photoemission spectroscopy and magneto-resistivity measurements. We also examine the FS evolution of both electron- and hole-doped cases and compare them with measurements, as well as with those obtained by other model Hamiltonians.
Using both two orbital and five orbital models, we investigate the quasiparticle interference (QPI) patterns in the superconducting (SC) state of iron-based superconductors. We compare the results for nonmagnetic and magnetic impurities in sign-chang ed s-wave $cos(k_x)cdotcos(k_y)$ and sign-unchanged $|cos(k_x)cdotcos(k_y)|$ SC states. While the patterns strongly depend on the chosen band structures, the sensitivity of peaks around $(pmpi,0)$ and $(0,pmpi)$ wavevectors on magnetic or non-magnetic impurity, and sign change or sign unchanged SC orders is common in two models. Our results strongly suggest that QPI may provide direct information of band structures and evidence of the pairing symmetry in the SC states.
152 - Dheeraj Kumar Singh 2017
We investigate the role of gap characteristics such as anisotropy and inequality of the gaps in the quasiparticle interferences of iron pnictides using a five-orbital tight-binding model. We examine how the difference in the sensitivities exhibited b y the sign-changing and -preserving $s$-wave superconductivity in an annular region around ($pi, 0$), which can be used to determine the sign change of the superconducting gap, gets affected when the gaps are unequal on the electron and hole pocket. In addition, we also discuss how robust these differentiating features are on changing the quasiparticle energy or when the gap is anisotropic.
119 - A. Pogrebna 2014
We systematically investigate temperature- and spectrally-dependent optical reflectivity dynamics in AAs$_{2}$Fe$_{2}$, (A=Ba, Sr and Eu), iron-based superconductors parent spin-density-wave (SDW) compounds. Two different relaxation processes are ide ntified. The behavior of the slower process, which is strongly sensitive to the magneto-structural transition, is analyzed in the framework of the relaxation-bottleneck model involving magnons. The results are compared to recent time resolved angular photoemission results (TR-ARPES) and possible alternative assignment of the slower relaxation to the magneto-structural order parameter relaxation is discussed.
181 - F. Hardy , P. Burger , T. Wolf 2010
An extensive calorimetric study of the normal- and superconducting-state properties of Ba(Fe1-xCox)2As2 is presented for 0 < x < 0.2. The normal-state Sommerfeld coefficient increases (decreases) with Co doping for x < 0.06 (x > 0.06), which illustra tes the strong competition between magnetism and superconductivity to monopolize the Fermi surface in the underdoped region and the filling of the hole bands for overdoped Ba(Fe1-xCox)2As2. All superconducting samples exhibit a residual electronic density of states of unknown origin in the zero-temperature limit, which is minimal at optimal doping but increases to the normal-state value in the strongly under- and over-doped regions. The remaining specific heat in the superconducting state is well described using a two-band model with isotropic s-wave superconducting gaps.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا