ﻻ يوجد ملخص باللغة العربية
To explore the doping dependence of the recently discovered charge density wave (CDW) order in YBa2Cu3Oy, we present a bulk-sensitive high-energy x-ray study for several oxygen concentrations, including strongly underdoped YBa2Cu3O6.44. Combined with previous data around the so-called 1/8 doping, we show that bulk CDW order exists at least for hole concentrations (p) in the CuO2 planes of 0.078 <~ p <~ 0.132. This implies that CDW order exists in close vicinity to the quantum critical point for spin density wave (SDW) order. In contrast to the pseudogap temperature T*, the onset temperature of CDW order decreases with underdoping to T_CDW ~ 90K in YBa2Cu3O6.44. Together with a weakened order parameter this suggests a competition between CDW and SDW orders. In addition, the CDW order in YBa2Cu3O6.44 shows the same type of competition with superconductivity as a function of temperature and magnetic field as samples closer to p = 1/8. At low p the CDW incommensurability continues the previously reported linear increasing trend with underdoping. In the entire doping range the in-plane correlation length of the CDW order in b-axis direction depends only very weakly on the hole concentration, and appears independent of the type and correlation length of the oxygen-chain order. The onset temperature of the CDW order is remarkably close to a temperature T^dagger that marks the maximum of 1/(T_1T) in planar 63^Cu NQR/NMR experiments, potentially indicating a response of the spin dynamics to the formation of the CDW. Our discussion of these findings includes a detailed comparison to the charge stripe order in La2-xBaxCuO4.
Vortices in a type-II superconductor form a lattice structure that melts when the thermal displacement of the vortices is an appreciable fraction of the distance between vortices. In an anisotropic high-Tc superconductor, such as YBa2Cu3Oy, the magne
The value of the upper critical field Hc2, a fundamental characteristic of the superconducting state, has been subject to strong controversy in high-Tc copper-oxides. Since the issue has been tackled almost exclusively by macroscopic techniques so fa
The interplay between different ordered phases, such as superconducting, charge or spin ordered phases, is of central interest in condensed matter physics. The very recent discovery of superconductivity with a remarkable T$_c$= 26 K in Fe-based oxypn
Strongly interacting electrons in solid-state systems often display tendency towards multiple broken symmetries in the ground state. The complex interplay between different order parameters can give rise to a rich phase diagram. Here, we report on th
Muon spin rotation and relaxation studies have been performed on a 111 family of iron-based superconductors NaFe_1-xNi_xAs. Static magnetic order was characterized by obtaining the temperature and doping dependences of the local ordered magnetic mome