ﻻ يوجد ملخص باللغة العربية
Experiments and theoretical modeling yielded significant progress towards understanding of Kerr-effect induced optical frequency comb generation in microresonators. However, the simultaneous interaction of hundreds or thousands of optical comb frequencies with the same number of resonator modes leads to complicated nonlinear dynamics that are far from fully understood. An important prerequisite for modeling the comb formation process is the knowledge of phase and amplitude of the comb modes as well as the detuning from their respective microresonator modes. Here, we present comprehensive measurements that fully characterize optical microcomb states. We introduce a way of measuring resonator dispersion and detuning of comb modes in a hot resonator while generating an optical frequency comb. The presented phase measurements show unpredicted comb states with discrete {pi} and {pi}/2 steps in the comb phases that are not observed in conventional optical frequency combs.
Microresonator-based optical frequency combs have been a topic of extensive research during the last few years. Several theoretical models for the comb generation have been proposed; however, they do not comprehensively address experimental results t
A study is made of frequency comb generation described by the driven and damped nonlinear Schrodinger equation on a finite interval. It is shown that frequency comb generation can be interpreted as a modulational instability of the continuous wave pu
Microresonator-based Kerr frequency comb (microcomb) generation can potentially revolutionize a variety of applications ranging from telecommunications to optical frequency synthesis. However, phase-locked microcombs have generally had low conversion
With demonstrated applications ranging from metrology to telecommunications, soliton microresonator frequency combs have emerged over the past decade as a remarkable new technology. However, standard implementations only allow for the generation of c
Taking advantage of an extended Lugiato--Lefever equation with third-order dispersion, we numerically show that dark cavity solitons formed in normal dispersion of microresonators are capable of emitting dispersive waves in both normal and anomalous